Learn R Programming

parameters (version 0.14.0)

ci.default: Confidence Intervals (CI)

Description

Compute confidence intervals (CI) for frequentist models.

Usage

# S3 method for default
ci(x, ci = 0.95, dof = Inf, method = NULL, ...)

# S3 method for glm ci(x, ci = 0.95, method = c("profile", "wald", "robust"), ...)

# S3 method for DirichletRegModel ci(x, ci = 0.95, component = c("all", "conditional", "precision"), ...)

# S3 method for betareg ci(x, ci = 0.95, component = c("all", "conditional", "precision"), ...)

# S3 method for glmmTMB ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), method = c("wald", "ml1", "betwithin", "robust", "profile", "uniroot"), verbose = TRUE, ... )

# S3 method for merMod ci( x, ci = 0.95, method = c("wald", "ml1", "betwithin", "satterthwaite", "kenward", "boot", "profile"), ... )

# S3 method for polr ci(x, ci = 0.95, method = c("profile", "wald", "robust"), ...)

# S3 method for poissonmfx ci( x, ci = 0.95, component = c("all", "conditional", "marginal"), method = NULL, ... )

# S3 method for betamfx ci( x, ci = 0.95, component = c("all", "conditional", "precision", "marginal"), method = NULL, ... )

# S3 method for MixMod ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated"), verbose = TRUE, ... )

# S3 method for mixor ci(x, ci = 0.95, effects = "all", ...)

# S3 method for lme ci(x, ci = 0.95, method = c("wald", "betwithin", "ml1", "satterthwaite"), ...)

# S3 method for clm2 ci(x, ci = 0.95, component = c("all", "conditional", "scale"), ...)

# S3 method for zeroinfl ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), method = c("wald", "ml1", "betwithin", "robust", "profile", "uniroot"), verbose = TRUE, ... )

# S3 method for hurdle ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), method = c("wald", "ml1", "betwithin", "robust", "profile", "uniroot"), verbose = TRUE, ... )

# S3 method for HLfit ci( x, ci = 0.95, method = c("wald", "ml1", "betwithin", "profile", "boot"), iterations = 100, ... )

# S3 method for svyglm ci(x, ci = 0.95, method = c("wald", "likelihood"), ...)

Arguments

x

A statistical model.

ci

Confidence Interval (CI) level. Default to 0.95 (95%).

dof

Degrees of Freedom. If not specified, for ci_wald(), defaults to model's residual degrees of freedom (i.e. n-k, where n is the number of observations and k is the number of parameters). For p_value_wald(), defaults to Inf.

method

For mixed models, can be "wald" (default), "ml1" or "betwithin". For linear mixed model, can also be "satterthwaite", "kenward" or "boot" (see lme4::confint.merMod). For (generalized) linear models, can be "robust" to compute confidence intervals based on robust covariance matrix estimation, and for generalized linear models and models from packages lme4 or glmmTMB, may also be "profile", "uniroot" or "wald" (default).

...

Arguments passed down to standard_error_robust() when confidence intervals or p-values based on robust standard errors should be computed.

component

Should all parameters, parameters for the conditional model, or for the zero-inflated part of the model be returned? Applies to models with zero-inflated component. component may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

verbose

Toggle warnings and messages.

effects

Should standard errors for fixed effects or random effects be returned? Only applies to mixed models. May be abbreviated. When standard errors for random effects are requested, for each grouping factor a list of standard errors (per group level) for random intercepts and slopes is returned.

iterations

The number of draws to simulate/bootstrap.

Value

A data frame containing the CI bounds.

Examples

Run this code
# NOT RUN {
library(parameters)
if (require("glmmTMB")) {
  model <- glmmTMB(
    count ~ spp + mined + (1 | site),
    ziformula = ~mined,
    family = poisson(),
    data = Salamanders
  )

  ci(model)
  ci(model, component = "zi")
}
# }

Run the code above in your browser using DataLab