standard_error()
attempts to return standard errors of model
parameters, while standard_error_robust()
attempts to return robust
standard errors.
standard_error(model, ...)# S3 method for default
standard_error(model, method = NULL, verbose = TRUE, ...)
# S3 method for DirichletRegModel
standard_error(model, component = c("all", "conditional", "precision"), ...)
# S3 method for averaging
standard_error(model, component = c("conditional", "full"), ...)
# S3 method for factor
standard_error(model, force = FALSE, verbose = TRUE, ...)
# S3 method for betareg
standard_error(model, component = c("all", "conditional", "precision"), ...)
# S3 method for glmmTMB
standard_error(
model,
effects = c("fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
verbose = TRUE,
...
)
# S3 method for merMod
standard_error(model, effects = c("fixed", "random"), method = NULL, ...)
# S3 method for poissonmfx
standard_error(model, component = c("all", "conditional", "marginal"), ...)
# S3 method for betamfx
standard_error(
model,
component = c("all", "conditional", "precision", "marginal"),
...
)
# S3 method for MixMod
standard_error(
model,
effects = c("fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated"),
verbose = TRUE,
...
)
# S3 method for mixor
standard_error(model, effects = "all", ...)
# S3 method for clm2
standard_error(model, component = c("all", "conditional", "scale"), ...)
# S3 method for zeroinfl
standard_error(
model,
component = c("all", "conditional", "zi", "zero_inflated"),
method = NULL,
verbose = TRUE,
...
)
# S3 method for coxph
standard_error(model, method = NULL, ...)
A model.
Arguments passed to or from other methods. For
standard_error()
, if method = "robust"
, arguments
vcov_estimation
, vcov_type
and vcov_args
can be passed
down to standard_error_robust()
.
If "robust"
, robust standard errors are computed by
calling standard_error_robust()
.
standard_error_robust()
, in turn, calls one of the
vcov*()
-functions from the sandwich or clubSandwich
package for robust covariance matrix estimators. For certain mixed models,
method
may also be one of "wald"
,
"ml1"
,
"betwithin"
,
"satterthwaite"
or
"kenward"
.
Toggle warnings and messages.
Should all parameters, parameters for the conditional model,
or for the zero-inflated part of the model be returned? Applies to models
with zero-inflated component. component
may be one of "conditional"
,
"zi"
, "zero-inflated"
, "dispersion"
or "all"
(default). May be abbreviated.
Logical, if TRUE
, factors are converted to numerical
values to calculate the standard error, with the lowest level being the
value 1
(unless the factor has numeric levels, which are converted
to the corresponding numeric value). By default, NA
is returned for
factors or character vectors.
Should standard errors for fixed effects or random effects be returned? Only applies to mixed models. May be abbreviated. When standard errors for random effects are requested, for each grouping factor a list of standard errors (per group level) for random intercepts and slopes is returned.
A data frame with at least two columns: the parameter names and the standard errors. Depending on the model, may also include columns for model components etc.
# NOT RUN {
model <- lm(Petal.Length ~ Sepal.Length * Species, data = iris)
standard_error(model)
# }
Run the code above in your browser using DataLab