Compute and extract model parameters of multiple regression
models. See model_parameters()
for further details.
compare_parameters(
...,
ci = 0.95,
effects = "fixed",
component = "conditional",
standardize = NULL,
exponentiate = FALSE,
ci_method = "wald",
p_adjust = NULL,
style = NULL,
column_names = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
df_method = ci_method
)compare_models(
...,
ci = 0.95,
effects = "fixed",
component = "conditional",
standardize = NULL,
exponentiate = FALSE,
ci_method = "wald",
p_adjust = NULL,
style = NULL,
column_names = NULL,
keep = NULL,
drop = NULL,
parameters = keep,
verbose = TRUE,
df_method = ci_method
)
One or more regression model objects, or objects returned by
model_parameters()
. Regression models may be of different model
types. Model objects may be passed comma separated, or as a list.
If model objects are passed with names or the list has named elements,
these names will be used as column names.
Confidence Interval (CI) level. Default to 0.95
(95%
).
Should parameters for fixed effects ("fixed"
), random
effects ("random"
), or both ("all"
) be returned? Only applies
to mixed models. May be abbreviated. If the calculation of random effects
parameters takes too long, you may use effects = "fixed"
.
Model component for which parameters should be shown. See
documentation for related model class in model_parameters()
.
The method used for standardizing the parameters. Can be
NULL
(default; no standardization), "refit"
(for re-fitting the model
on standardized data) or one of "basic"
, "posthoc"
, "smart"
,
"pseudo"
. See 'Details' in effectsize::standardize_parameters()
.
Important:
The "refit"
method does not standardized categorical predictors (i.e.
factors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS). to mimic
such behaviours, either use standardize="basic"
or standardize the data
with datawizard::standardize(force=TRUE)
before fitting the model.
For mixed models, when using methods other than "refit"
, only the fixed
effects will be returned.
Robust estimation (i.e., vcov
set to a value other than NULL
) of standardized parameters only
works when standardize="refit"
.
Logical, indicating whether or not to exponentiate the
the coefficients (and related confidence intervals). This is typical for
logistic regression, or more generally speaking, for models with log
or logit links. Note: Delta-method standard errors are also
computed (by multiplying the standard errors by the transformed
coefficients). This is to mimic behaviour of other software packages, such
as Stata, but these standard errors poorly estimate uncertainty for the
transformed coefficient. The transformed confidence interval more clearly
captures this uncertainty. For compare_parameters()
,
exponentiate = "nongaussian"
will only exponentiate coefficients
from non-Gaussian families.
Method for computing degrees of freedom for p values
and confidence intervals (CI). See documentation for related model class
in model_parameters()
.
Character vector, if not NULL
, indicates the method to
adjust p-values. See stats::p.adjust()
for details. Further
possible adjustment methods are "tukey"
, "scheffe"
,
"sidak"
and "none"
to explicitly disable adjustment for
emmGrid
objects (from emmeans).
String, indicating which style of output is requested. Following templates are possible:
"ci"
: Estimate and confidence intervals, no asterisks for p-values.
"se"
: Estimate and standard errors, no asterisks for p-values.
"ci_p"
: Estimate, confidence intervals and asterisks for p-values.
"se_p"
: Estimate, standard errors and asterisks for p-values.
"ci_p2"
: Estimate, confidence intervals and numeric p-values, in two columns.
"se_p2"
: Estimate, standard errors and numeric p-values, in two columns.
Character vector with strings that should be used as
column headers. Must be of same length as number of models in ...
.
Character containing a regular expression pattern that
describes the parameters that should be included (for keep
) or excluded
(for drop
) in the returned data frame. keep
may also be a
named list of regular expressions. All non-matching parameters will be
removed from the output. If keep
is a character vector, every parameter
name in the "Parameter" column that matches the regular expression in
keep
will be selected from the returned data frame (and vice versa,
all parameter names matching drop
will be excluded). Furthermore, if
keep
has more than one element, these will be merged with an OR
operator into a regular expression pattern like this: "(one|two|three)"
.
If keep
is a named list of regular expression patterns, the names of the
list-element should equal the column name where selection should be
applied. This is useful for model objects where model_parameters()
returns multiple columns with parameter components, like in
model_parameters.lavaan()
. Note that the regular expression pattern
should match the parameter names as they are stored in the returned data
frame, which can be different from how they are printed. Inspect the
$Parameter
column of the parameters table to get the exact parameter
names.
See keep
.
Deprecated, alias for keep
.
Toggle warnings and messages.
Deprecated. Please use ci_method
.
A data frame of indices related to the model's parameters.
This function is in an early stage and does not yet cope with more complex models, and probably does not yet properly render all model components. It should also be noted that when including models with interaction terms, not only do the values of the parameters change, but so does their meaning (from main effects, to simple slopes), thereby making such comparisons hard. Therefore, you should not use this function to compare models with interaction terms with models without interaction terms.
# NOT RUN {
data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
compare_parameters(lm1, lm2)
data(mtcars)
m1 <- lm(mpg ~ wt, data = mtcars)
m2 <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
compare_parameters(m1, m2)
# }
# NOT RUN {
# exponentiate coefficients, but not for lm
compare_parameters(m1, m2, exponentiate = "nongaussian")
# change column names
compare_parameters("linear model" = m1, "logistic reg." = m2)
compare_parameters(m1, m2, column_names = c("linear model", "logistic reg."))
# or as list
compare_parameters(list(m1, m2))
compare_parameters(list("linear model" = m1, "logistic reg." = m2))
# }
Run the code above in your browser using DataLab