Parameters from ANOVAs
# S3 method for aov
model_parameters(
model,
type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
effectsize_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
...
)# S3 method for anova
model_parameters(
model,
type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
effectsize_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
...
)
# S3 method for aovlist
model_parameters(
model,
type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
effectsize_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
...
)
# S3 method for afex_aov
model_parameters(
model,
effectsize_type = NULL,
df_error = NULL,
type = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)
# S3 method for anova.rms
model_parameters(
model,
type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
effectsize_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
...
)
# S3 method for Anova.mlm
model_parameters(
model,
type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
effectsize_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
...
)
# S3 method for maov
model_parameters(
model,
type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
effectsize_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
...
)
A data frame of indices related to the model's parameters.
Object of class aov()
, anova()
,
aovlist
, Gam
, manova()
, Anova.mlm
,
afex_aov
or maov
.
Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3,
ANOVA-tables using car::Anova()
will be returned. (Ignored for
afex_aov
.)
Denominator degrees of freedom (or degrees of freedom of the
error estimate, i.e., the residuals). This is used to compute effect sizes
for ANOVA-tables from mixed models. See 'Examples'. (Ignored for
afex_aov
.)
Confidence Interval (CI) level for effect sizes specified in
effectsize_type
. The default, NULL
, will compute no confidence
intervals. ci
should be a scalar between 0 and 1.
A character string specifying the alternative hypothesis;
Controls the type of CI returned: "two.sided"
(default, two-sided CI),
"greater"
or "less"
(one-sided CI). Partial matching is allowed
(e.g., "g"
, "l"
, "two"
...). See section One-Sided CIs in
the effectsize_CIs vignette.
String, indicating the type of test for Anova.mlm
to be
returned. If "multivariate"
(or NULL
), returns the summary of
the multivariate test (that is also given by the print
-method). If
test = "univariate"
, returns the summary of the univariate test.
Logical, if TRUE
, adds a column with power for each
parameter.
The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names.
Character containing a regular expression pattern that
describes the parameters that should be included (for keep
) or excluded
(for drop
) in the returned data frame. keep
may also be a
named list of regular expressions. All non-matching parameters will be
removed from the output. If keep
is a character vector, every parameter
name in the "Parameter" column that matches the regular expression in
keep
will be selected from the returned data frame (and vice versa,
all parameter names matching drop
will be excluded). Furthermore, if
keep
has more than one element, these will be merged with an OR
operator into a regular expression pattern like this: "(one|two|three)"
.
If keep
is a named list of regular expression patterns, the names of the
list-element should equal the column name where selection should be
applied. This is useful for model objects where model_parameters()
returns multiple columns with parameter components, like in
model_parameters.lavaan()
. Note that the regular expression pattern
should match the parameter names as they are stored in the returned data
frame, which can be different from how they are printed. Inspect the
$Parameter
column of the parameters table to get the exact parameter
names.
See keep
.
Logical that decides whether the ANOVA table should be in
wide format, i.e. should the numerator and denominator degrees of freedom
be in the same row. Default: FALSE
.
Toggle warnings and messages.
Deprecated. Please use effectsize_type
.
Arguments passed to effectsize::effectsize()
. For example,
to calculate partial effect sizes types, use partial = TRUE
. For objects
of class htest
or BFBayesFactor
, adjust = TRUE
can be used to return
bias-corrected effect sizes, which is advisable for small samples and large
tables. See also
?effectsize::eta_squared
for arguments partial
and generalized
;
?effectsize::phi
for adjust
; and
?effectsize::oddratio
for log
.
For an object of class htest
, data is extracted via insight::get_data()
, and passed to the relevant function according to:
A t-test depending on type
: "cohens_d"
(default), "hedges_g"
, or one of "p_superiority"
, "u1"
, "u2"
, "u3"
, "overlap"
.
A Chi-squared tests of independence or Fisher's Exact Test, depending on type
: "cramers_v"
(default), "tschuprows_t"
, "phi"
, "cohens_w"
, "pearsons_c"
, "cohens_h"
, "oddsratio"
, "riskratio"
, "arr"
, or "nnt"
.
A Chi-squared tests of goodness-of-fit, depending on type
: "fei"
(default) "cohens_w"
, "pearsons_c"
A One-way ANOVA test, depending on type
: "eta"
(default), "omega"
or "epsilon"
-squared, "f"
, or "f2"
.
A McNemar test returns Cohen's g.
A Wilcoxon test depending on type
: returns "rank_biserial
" correlation (default) or one of "p_superiority"
, "vda"
, "u2"
, "u3"
, "overlap"
.
A Kruskal-Wallis test depending on type
: "epsilon"
(default) or "eta"
.
A Friedman test returns Kendall's W.
(Where applicable, ci
and alternative
are taken from the htest
if not otherwise provided.)
For an object of class BFBayesFactor
, using bayestestR::describe_posterior()
,
A t-test depending on type
: "cohens_d"
(default) or one of "p_superiority"
, "u1"
, "u2"
, "u3"
, "overlap"
.
A correlation test returns r.
A contingency table test, depending on type
: "cramers_v"
(default), "phi"
, "tschuprows_t"
, "cohens_w"
, "pearsons_c"
, "cohens_h"
, "oddsratio"
, or "riskratio"
, "arr"
, or "nnt"
.
A proportion test returns p.
Objects of class anova
, aov
, aovlist
or afex_aov
, depending on type
: "eta"
(default), "omega"
or "epsilon"
-squared, "f"
, or "f2"
.
Other objects are passed to parameters::standardize_parameters()
.
For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.
if (FALSE) { # requireNamespace("effectsize", quietly = TRUE)
df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
model <- aov(Sepal.Length ~ Sepal.Big, data = df)
model_parameters(model)
model_parameters(model, effectsize_type = c("omega", "eta"), ci = 0.9)
model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
model_parameters(model)
model_parameters(
model,
effectsize_type = c("omega", "eta", "epsilon"),
alternative = "greater"
)
model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
model_parameters(model)
}
if (FALSE) {
mm <- lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species), data = df)
model <- anova(mm)
# simple parameters table
model_parameters(model)
# parameters table including effect sizes
model_parameters(
model,
effectsize_type = "eta",
ci = 0.9,
df_error = dof_satterthwaite(mm)[2:3]
)
}
Run the code above in your browser using DataLab