Learn R Programming

parameters (version 0.22.0)

convert_efa_to_cfa: Conversion between EFA results and CFA structure

Description

Enables a conversion between Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) lavaan-ready structure.

Usage

convert_efa_to_cfa(model, ...)

# S3 method for fa convert_efa_to_cfa( model, threshold = "max", names = NULL, max_per_dimension = NULL, ... )

efa_to_cfa(model, ...)

Value

Converted index.

Arguments

model

An EFA model (e.g., a psych::fa object).

...

Arguments passed to or from other methods.

threshold

A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be "max", in which case it will only display the maximum loading per variable (the most simple structure).

names

Vector containing dimension names.

max_per_dimension

Maximum number of variables to keep per dimension.

Examples

Run this code
if (FALSE) { # require("psych") && require("lavaan")
# \donttest{
library(parameters)
data(attitude)
efa <- psych::fa(attitude, nfactors = 3)

model1 <- efa_to_cfa(efa)
model2 <- efa_to_cfa(efa, threshold = 0.3)
model3 <- efa_to_cfa(efa, max_per_dimension = 2)

suppressWarnings(anova(
  lavaan::cfa(model1, data = attitude),
  lavaan::cfa(model2, data = attitude),
  lavaan::cfa(model3, data = attitude)
))
# }
}

Run the code above in your browser using DataLab