Learn R Programming

parameters (version 0.22.0)

p_value.poissonmfx: p-values for Marginal Effects Models

Description

This function attempts to return, or compute, p-values of marginal effects models from package mfx.

Usage

# S3 method for poissonmfx
p_value(model, component = c("all", "conditional", "marginal"), ...)

# S3 method for betaor p_value(model, component = c("all", "conditional", "precision"), ...)

# S3 method for betamfx p_value( model, component = c("all", "conditional", "precision", "marginal"), ... )

Value

A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.

Arguments

model

A statistical model.

component

Should all parameters, parameters for the conditional model, precision-component or marginal effects be returned? component may be one of "conditional", "precision", "marginal" or "all" (default).

...

Currently not used.

Examples

Run this code
if (require("mfx", quietly = TRUE)) {
  set.seed(12345)
  n <- 1000
  x <- rnorm(n)
  y <- rnegbin(n, mu = exp(1 + 0.5 * x), theta = 0.5)
  d <- data.frame(y, x)
  model <- poissonmfx(y ~ x, data = d)

  p_value(model)
  p_value(model, component = "marginal")
}

Run the code above in your browser using DataLab