Learn R Programming

parameters (version 0.4.0)

model_parameters.default: Parameters of (General) Linear Models

Description

Extract and compute indices and measures to describe parameters of (general) linear models (GLMs).

Usage

# S3 method for default
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  robust = FALSE,
  ...
)

# S3 method for betareg model_parameters( model, ci = 0.95, bootstrap = FALSE, iterations = 1000, component = c("conditional", "precision", "all"), standardize = NULL, exponentiate = FALSE, ... )

# S3 method for clm2 model_parameters( model, ci = 0.95, bootstrap = FALSE, iterations = 1000, component = c("all", "conditional", "scale"), standardize = NULL, exponentiate = FALSE, ... )

# S3 method for glmx model_parameters( model, ci = 0.95, bootstrap = FALSE, iterations = 1000, component = c("all", "conditional", "extra"), standardize = NULL, exponentiate = FALSE, ... )

Arguments

model

Model object.

ci

Confidence Interval (CI) level. Default to 0.95 (95%).

bootstrap

Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also parameters_bootstrap()).

iterations

The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

standardize

The method used for standardizing the parameters. Can be "refit", "posthoc", "smart", "basic" or NULL (default) for no standardization. See 'Details' in standardize_parameters.

exponentiate

Logical, indicating whether or not to exponentiate the the coefficients (and related confidence intervals). This is typical for, say, logistic regressions, or more generally speaking: for models with log or logit link.

robust

Logical, if TRUE, robust standard errors are calculated (if possible), and confidence intervals and p-values are based on these robust standard errors.

...

Arguments passed to or from other methods.

component

Model component for which parameters should be shown. May be one of "conditional", "precision" (betareg), "scale" (ordinal), "extra" (glmx) or "all".

Value

A data frame of indices related to the model's parameters.

See Also

standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

Run this code
# NOT RUN {
library(parameters)
model <- lm(mpg ~ wt + cyl, data = mtcars)

model_parameters(model)

# bootstrapped parameters
model_parameters(model, bootstrap = TRUE)

# standardized parameters
model_parameters(model, standardize = "refit")

# different p-value style in output
model_parameters(model, p_digits = 5)
model_parameters(model, digits = 3, ci_digits = 4, p_digits = "scientific")

# logistic regression model
model <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
model_parameters(model)
# }

Run the code above in your browser using DataLab