Learn R Programming

parameters (version 0.4.0)

model_parameters.zeroinfl: Model Parameters for Zero-Inflated Models

Description

Parameters of zero-inflated models.

Usage

# S3 method for zeroinfl
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "zi", "zero_inflated"),
  standardize = NULL,
  exponentiate = FALSE,
  robust = FALSE,
  ...
)

Arguments

model

A model with zero-inflation component.

ci

Confidence Interval (CI) level. Default to 0.95 (95%).

bootstrap

Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also parameters_bootstrap()).

iterations

The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

component

Model component for which parameters should be shown. May be one of "conditional", "precision" (betareg), "scale" (ordinal), "extra" (glmx) or "all".

standardize

The method used for standardizing the parameters. Can be "refit", "posthoc", "smart", "basic" or NULL (default) for no standardization. See 'Details' in standardize_parameters.

exponentiate

Logical, indicating whether or not to exponentiate the the coefficients (and related confidence intervals). This is typical for, say, logistic regressions, or more generally speaking: for models with log or logit link.

robust

Logical, if TRUE, robust standard errors are calculated (if possible), and confidence intervals and p-values are based on these robust standard errors.

...

Arguments passed to or from other methods.

Value

A data frame of indices related to the model's parameters.

See Also

standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

Run this code
# NOT RUN {
library(parameters)
library(pscl)

data("bioChemists")
model <- zeroinfl(art ~ fem + mar + kid5 + ment | kid5 + phd, data = bioChemists)
model_parameters(model)
# }

Run the code above in your browser using DataLab