Parameters from multinomial or cumulative link models
# S3 method for mlm
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
...
)# S3 method for multinom
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
...
)
# S3 method for bracl
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
...
)
# S3 method for DirichletRegModel
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "precision"),
standardize = NULL,
exponentiate = FALSE,
...
)
A model with multinomial or categorical response value.
Confidence Interval (CI) level. Default to 0.95 (95%).
Should estimates be based on bootstrapped model? If TRUE
, then arguments of Bayesian regressions apply (see also bootstrap_parameters()
).
The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
The method used for standardizing the parameters. Can be "refit"
, "posthoc"
, "smart"
, "basic"
or NULL
(default) for no standardization. See 'Details' in standardize_parameters
. Note that robust estimation (i.e. robust=TRUE
) of standardized parameters only works when standardize="refit"
.
Logical, indicating whether or not to exponentiate the the coefficients (and related confidence intervals). This is typical for, say, logistic regressions, or more generally speaking: for models with log or logit link.
Character vector, if not NULL
, indicates the method to adjust p-values. See p.adjust
for details.
Arguments passed to or from other methods. For instance, when bootstrap = TRUE
, arguments like ci_method
are passed down to describe_posterior
.
Model component for which parameters should be shown. May be one of "conditional"
, "precision"
(betareg), "scale"
(ordinal), "extra"
(glmx) or "all"
.
A data frame of indices related to the model's parameters.
Multinomial or cumulative link models, i.e. models where the
response value (dependent variable) is categorical and has more than two
levels, usually return coefficients for each response level. Hence, the
output from model_parameters()
will split the coefficient tables
by the different levels of the model's response.
standardize_names()
to rename
columns into a consistent, standardized naming scheme.
# NOT RUN {
library(parameters)
if (require("brglm2")) {
data("stemcell")
model <- bracl(
research ~ as.numeric(religion) + gender,
weights = frequency,
data = stemcell,
type = "ML"
)
model_parameters(model)
}
# }
Run the code above in your browser using DataLab