Learn R Programming

parameters (version 0.8.5)

ci.merMod: Confidence Intervals (CI)

Description

Compute confidence intervals (CI) for frequentist models.

Usage

# S3 method for merMod
ci(
  x,
  ci = 0.95,
  method = c("wald", "ml1", "betwithin", "satterthwaite", "kenward", "boot"),
  ...
)

# S3 method for default ci(x, ci = 0.95, method = NULL, ...)

# S3 method for glm ci(x, ci = 0.95, method = c("profile", "wald", "robust"), ...)

# S3 method for polr ci(x, ci = 0.95, method = c("profile", "wald", "robust"), ...)

# S3 method for mixor ci(x, ci = 0.95, effects = c("all", "fixed", "random"), ...)

# S3 method for DirichletRegModel ci(x, ci = 0.95, component = c("all", "conditional", "precision"), ...)

# S3 method for glmmTMB ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), method = c("wald", "ml1", "betwithin", "robust"), ... )

# S3 method for zeroinfl ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), method = c("wald", "ml1", "betwithin", "robust"), ... )

# S3 method for hurdle ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated", "dispersion"), method = c("wald", "ml1", "betwithin", "robust"), ... )

# S3 method for MixMod ci( x, ci = 0.95, component = c("all", "conditional", "zi", "zero_inflated"), ... )

# S3 method for poissonmfx ci( x, ci = 0.95, component = c("all", "conditional", "marginal"), method = NULL, ... )

# S3 method for betamfx ci( x, ci = 0.95, component = c("all", "conditional", "precision", "marginal"), method = NULL, ... )

# S3 method for betareg ci(x, ci = 0.95, component = c("all", "conditional", "precision"), ...)

# S3 method for clm2 ci(x, ci = 0.95, component = c("all", "conditional", "scale"), ...)

# S3 method for lme ci(x, ci = 0.95, method = c("wald", "betwithin", "ml1", "satterthwaite"), ...)

Arguments

x

A statistical model.

ci

Confidence Interval (CI) level. Default to 0.95 (95%).

method

For mixed models, can be "wald" (default), "ml1" or "betwithin". For linear mixed model, can also be "satterthwaite", "kenward" or "boot" and lme4::confint.merMod). For (generalized) linear models, can be "robust" to compute confidence intervals based on robust standard errors, and for generalized linear models, may also be "profile" (default) or "wald".

...

Arguments passed down to standard_error_robust() when confidence intervals or p-values based on robust standard errors should be computed.

effects

Should standard errors for fixed effects or random effects be returned? Only applies to mixed models. May be abbreviated. When standard errors for random effects are requested, for each grouping factor a list of standard errors (per group level) for random intercepts and slopes is returned.

component

Should all parameters, parameters for the conditional model, or for the zero-inflated part of the model be returned? Applies to models with zero-inflated component. component may be one of "conditional", "zi", "zero-inflated" or "all" (default). May be abbreviated.

Value

A data frame containing the CI bounds.

Examples

Run this code
# NOT RUN {
library(parameters)
if (require("glmmTMB")) {
  model <- glmmTMB(
    count ~ spp + mined + (1 | site),
    ziformula = ~mined,
    family = poisson(),
    data = Salamanders
  )

  ci(model)
  ci(model, component = "zi")
}
# }

Run the code above in your browser using DataLab