Learn R Programming

parameters (version 0.8.5)

model_parameters.aov: Parameters from ANOVAs

Description

Parameters from ANOVAs.

Usage

# S3 method for aov
model_parameters(
  model,
  omega_squared = NULL,
  eta_squared = NULL,
  epsilon_squared = NULL,
  df_error = NULL,
  type = NULL,
  ...
)

Arguments

model

Object of class aov, anova or aovlist.

omega_squared

Compute omega squared as index of effect size. Can be "partial" (adjusted for effect size) or "raw".

eta_squared

Compute eta squared as index of effect size. Can be "partial" (adjusted for effect size), "raw" or "adjusted" (the latter option only for anova-tables from mixed models).

epsilon_squared

Compute epsilon squared as index of effect size. Can be "partial" (adjusted for effect size) or "raw".

df_error

Denominator degrees of freedom (or degrees of freedom of the error estimate, i.e., the residuals). This is used to compute effect sizes for anova tables from mixed models. See 'Examples'.

type

Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3, anova-tables using car::Anova() will be returned.

...

Arguments passed to or from other methods.

Value

A data frame of indices related to the model's parameters.

Examples

Run this code
# NOT RUN {
if (requireNamespace("effectsize", quietly = TRUE)) {
  df <- iris
  df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")

  model <- aov(Sepal.Length ~ Sepal.Big, data = df)
  model_parameters(
    model,
    omega_squared = "partial",
    eta_squared = "partial",
    epsilon_squared = "partial"
  )

  model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
  model_parameters(model)
  model_parameters(
    model,
    omega_squared = "partial",
    eta_squared = "partial",
    epsilon_squared = "partial"
  )

  model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
  model_parameters(model)

  if (require("lme4")) {
    mm <- lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species),
               data = df)
    model <- anova(mm)

    # simple parameters table
    model_parameters(model)

    # parameters table including effect sizes
    model_parameters(
      model,
      eta_squared = "partial",
      df_error = dof_satterthwaite(mm)
    )
  }
}
# }

Run the code above in your browser using DataLab