Learn R Programming

pastecs (version 1.3.21)

AutoD2: AutoD2, CrossD2 or CenterD2 analysis of a multiple time-series

Description

Compute and plot multiple autocorrelation using Mahalanobis generalized distance D2. AutoD2 uses the same multiple time-series. CrossD2 compares two sets of multiple time-series having same size (same number of descriptors). CenterD2 compares subsamples issued from a single multivariate time-series, aiming to detect discontinuities.

Usage

AutoD2(series, lags=c(1, nrow(series)/3), step=1, plotit=TRUE,
        add=FALSE, ...)
CrossD2(series, series2, lags=c(1, nrow(series)/3), step=1,
        plotit=TRUE, add=FALSE, ...)
CenterD2(series, window=nrow(series)/5, plotit=TRUE, add=FALSE,
        type="l", level=0.05, lhorz=TRUE, lcol=2, llty=2, ...)

Value

An object of class 'D2' which contains:

lag

The vector of lags

D2

The D2 value for this lag

call

The command invoked when this function was called

data

The series used

type

The type of 'D2' analysis: 'AutoD2', 'CrossD2' or 'CenterD2'

window

The size of the window used in the CenterD2 analysis

level

The significance level for CenterD2

chisq

The chi-square value corresponding to the significance level in the CenterD2 analysis

units.text

Time units of the series, nicely formatted for graphs

Arguments

series

regularized multiple time-series

series2

a second set of regularized multiple time-series

lags

minimal and maximal lag to use. By default, 1 and a third of the number of observations in the series respectively

step

step between successive lags. By default, 1

window

the window to use for CenterD2. By default, a fifth of the total number of observations in the series

plotit

if TRUE then also plot the graph

add

if TRUE then the graph is added to the current figure

type

The type of line to draw in the CenterD2 graph. By default, a line without points

level

The significance level to consider in the CenterD2 analysis. By default 5%

lhorz

Do we have to plot also the horizontal line representing the significance level on the graph?

lcol

The color of the significance level line. By default, color 2 is used

llty

The style for the significance level line. By default: llty=2, a dashed line is drawn

...

additional graph parameters

Author

Frédéric Ibanez (ibanez@obs-vlfr.fr), Philippe Grosjean (phgrosjean@sciviews.org)

WARNING

If data are too heterogeneous, results could be biased (a singularity matrix appears in the calculations).

References

Cooley, W.W. & P.R. Lohnes, 1962. Multivariate procedures for the behavioural sciences. Whiley & sons.

Dagnélie, P., 1975. Analyse statistique à plusieurs variables. Presses Agronomiques de Gembloux.

Ibanez, F., 1975. Contribution à l'analyse mathématique des évènements en écologie planctonique: optimisations méthodologiques; étude expérimentale en continu à petite échelle du plancton côtier. Thèse d'état, Paris VI.

Ibanez, F., 1976. Contribution à l'analyse mathématique des évènements en écologie planctonique. Optimisations méthodologiques. Bull. Inst. Océanogr. Monaco, 72:1-96.

Ibanez, F., 1981. Immediate detection of heterogeneities in continuous multivariate oceanographic recordings. Application to time series analysis of changes in the bay of Villefranche sur mer. Limnol. Oceanogr., 26:336-349.

Ibanez, F., 1991. Treatment of the data deriving from the COST 647 project on coastal benthic ecology: The within-site analysis. In: B. Keegan (ed), Space and time series data analysis in coastal benthic ecology, p 5-43.

See Also

Examples

Run this code
data(marphy)
marphy.ts <- as.ts(as.matrix(marphy[, 1:3]))
AutoD2(marphy.ts)
marphy.ts2 <- as.ts(as.matrix(marphy[, c(1, 4, 3)]))
CrossD2(marphy.ts, marphy.ts2)
# This is not identical to:
CrossD2(marphy.ts2, marphy.ts)
marphy.d2 <- CenterD2(marphy.ts, window=16)
lines(c(17, 17), c(-1, 15), col=4, lty=2)
lines(c(25, 25), c(-1, 15), col=4, lty=2)
lines(c(30, 30), c(-1, 15), col=4, lty=2)
lines(c(41, 41), c(-1, 15), col=4, lty=2)
lines(c(46, 46), c(-1, 15), col=4, lty=2)
text(c(8.5, 21, 27.5, 35, 43.5, 57), 11, labels=c("Peripheral Zone", "D1",
        "C", "Front", "D2", "Central Zone")) # Labels
time(marphy.ts)[marphy.d2$D2 > marphy.d2$chisq]

Run the code above in your browser using DataLab