vismodel(rspecdata, visual = c("avg.uv", "avg.v", "bluetit", "star", "pfowl", "apis", "canis", "cie2", "cie10", "musca"), achromatic = c("bt.dc", "ch.dc", "st.dc", "ml", "l", "md.r1", "none"), illum = c("ideal", "bluesky", "D65", "forestshade"), trans = c("ideal", "bluetit", "blackbird"), qcatch = c("Qi", "fi", "Ei"), bkg = c("ideal", "green"), vonkries = FALSE, scale = 1, relative = TRUE)
rspec
that has wavelength range in the first column, named 'wl', and spectral measurements in the
remaining columns.sensmodel
, containing
sensitivity for the user-defined visual system. The data frame must contain a 'wl'
column with the range of wavelengths included, and the sensitivity for each other
cone as a column.
avg.uv
: average avian UV system.
avg.v
: average avian V system.
bluetit
: Blue tit Cyanistes caeruleus visual system.
star
: Starling Sturnus vulgaris visual system.
pfowl
: Peafowl Pavo cristatus visual system.
apis
: Honeybee Apis mellifera visual system.
canis
: Canid Canis familiaris visual system.
musca
: Housefly Musca domestica visual system.
cie2
: 2-degree colour matching functions for CIE models of human
colour vision. Functions are linear transformations of the 2-degree cone fundamentals
of Stockman & Sharpe (2000), as ratified by the CIE (2006).
cie10
: 10-degree colour matching functions for CIE models of human
colour vision. Functions are linear transformations of the 10-degree cone fundamentals
of Stockman & Sharpe (2000), as ratified by the CIE (2006).
bt.dc
: Blue tit Cyanistes caeruleus double cone
ch.dc
: Chicken Gallus gallus double cone
st.dc
: Starling Sturnus vulgaris double cone
md.r1
: Housefly Musca domestica R1-6 photoreceptor
ml
: sum of the two longest-wavelength photoreceptors
l
: the longest-wavelength photoreceptor
none
ideal
: homogeneous illuminance of 1 accross wavelengths (default)
'bluesky'
open blue sky.
'D65'
: standard daylight.
'forestshade'
forest shade.
ideal
: homogeneous transmission of 1 accross all wavelengths (default)
'bluetit'
: blue tit Cyanistes caeruleus
ocular transmission (from Hart et al. 2000).
'blackbird'
: blackbird Turdus merula
ocular transmission (from Hart et al. 2000).
Qi
: Quantum catch for each photoreceptor
fi
: Quantum catch according to Fechner law (the signal of the receptor
channel is proportional to the logarithm of the quantum catch)
Ei
: Hyperbolic-transformed quantum catch, where Ei = Qi / (Qi + 1).
ideal
: homogeneous illuminance of 1 accross all wavelengths (default).
'green'
: green foliage.
FALSE
).vonkries = TRUE
this transformation has no effect.TRUE
).vismodel
containing the photon catches for each of the
photoreceptors considered. Information on the parameters used in the calculation are also
stored and can be called using the summary.vismodel
function.
Hart, N. S., Partridge, J. C., Cuthill, I. C., Bennett, A. T. D. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). Journal of Comparative Physiology A, 186, 375-387.
Hart, N. S. (2001). The visual ecology of avian photoreceptors. Progress In Retinal And Eye Research, 20(5), 675-703.
Stoddard, M. C., & Prum, R. O. (2008). Evolution of avian plumage color in a tetrahedral color space: A phylogenetic analysis of new world buntings. The American Naturalist, 171(6), 755-776.
Endler, J. A., & Mielke, P. (2005). Comparing entire colour patterns as birds see them. Biological Journal Of The Linnean Society, 86(4), 405-431.
Chittka L. (1992). The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. Journal of Comparative Physiology A, 170(5), 533-543.
Stockman, A., & Sharpe, L. T. (2000). Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vision Research, 40, 1711-1737.
CIE (2006). Fundamental chromaticity diagram with physiological axes. Parts 1 and 2. Technical Report 170-1. Vienna: Central Bureau of the Commission Internationale de l' Eclairage.
## Not run:
# # Dichromat (dingo)
# data(flowers)
# vis.flowers <- vismodel(flowers, visual = 'canis')
# di.flowers <- colspace(vis.flowers, space = 'di')
#
# # Trichromat (honeybee)
# data(flowers)
# vis.flowers <- vismodel(flowers, visual = 'apis')
# tri.flowers <- colspace(vis.flowers, space = 'tri')
#
# # Tetrachromat (blue tit)
# data(sicalis)
# vis.sicalis <- vismodel(sicalis, visual = 'bluetit')
# tcs.sicalis <- colspace(vis.sicalis, space = 'tcs')
# ## End(Not run)
Run the code above in your browser using DataLab