Learn R Programming

pavo (version 2.9.0)

adjacent: Run an adjacency and boundary strength analysis

Description

Calculate summary variables from the adjacency (Endler 2012) and boundary-strength (Endler et al. 2018) analyses, along with overall pattern contrast (Endler & Mielke 2005).

Usage

adjacent(
  classimg,
  xpts = NULL,
  xscale = NULL,
  bkgID = NULL,
  polygon = NULL,
  exclude = c("none", "background", "object"),
  coldists = NULL,
  hsl = NULL
)

Value

a data frame of summary variables:

  • 'k': The number of user-specified colour and/or luminance classes.

  • 'N': The grand total (sum of diagonal and off-diagonal) transitions.

  • 'n_off': The total off-diagonal transitions.

  • 'p_i': The overall frequency of colour class i.

  • 'q_i_j': The frequency of transitions between all colour classes i and j, such that sum(q_i_j) = 1.

  • 't_i_j': The frequency of off-diagonal (i.e. class-change transitions) transitions i and j, such that sum(t_i_j) = 1.

  • 'm': The overall transition density (mean transitions), in units specified in the argument xscale.

  • 'm_r': The row-wise transition density (mean row transitions), in user-specified units.

  • 'm_c': The column-wise transition density (mean column transitions), in user-specified units.

  • 'A': The transition aspect ratio (< 1 = wide, > 1 = tall).

  • 'Sc': Simpson colour class diversity, Sc = 1/(sum(p_i^2)). If all colour and luminance classes are equal in relative area, then Sc = k.

  • 'St': Simpson transition diversity, St = 1/sum(t_i_j^2).

  • 'Jc': Simpson colour class diversity relative to its achievable maximum. Jc = Sc/k.

  • 'Jt': Simpson transition diversity relative to its achievable maximum. Jt = St/(k*(k-1)/2).

  • 'B': The animal/background transition ratio, or the ratio of class-change transitions entirely within the focal object and those involving the object and background, B = sum(O_a_a / O_a_b).

  • 'Rt': Ratio of animal-animal and animal-background transition diversities, Rt = St_a_a / St_a_b.

  • 'Rab': Ratio of animal-animal and background-background transition diversities, Rt = St_a_a / St_b_b.

  • 'm_dS', 's_dS', 'cv_dS': weighted mean, sd, and coefficient of variation of the chromatic boundary strength.

  • 'm_dL', 's_dL', 'cv_dL': weighted mean, sd, and coefficient of variation of the achromatic boundary strength.

  • 'm_hue', 's_hue', 'var_hue': circular mean, sd, and variance of overall pattern hue (in radians).

  • 'm_sat', 's_sat', 'cv_sat': weighted mean, sd, and coefficient variation of overall pattern saturation.

  • 'm_lum', 's_lum', 'cv_lum': weighted mean, sd, and coefficient variation of overall pattern luminance.

Arguments

classimg

(required) an xyz matrix, or list of matrices, in which x and y correspond to spatial (e.g. pixel) coordinates, and z is a numeric code specifying a colour-class. Preferably the result of classify(), or constructed from grid-sampled spectra that have been visually modelled and clustered (as per Endler 2012).

xpts

an integer specifying the number of sample points along the x axis, from which the evenly-spaced sampling grid is constructed (if required). Defaults to the smallest dimension of classimg, though this should be carefully considered.

xscale

(required) an integer or list of integers equal in length to classimg() specifying the true length of the x-axis, in preferred units. Not required, and ignored, only if image scales have been set via procimg().

bkgID

an integer or vector specifying the colour-class ID number(s) of pertaining to the background alone, for relatively homogeneous and uniquely-identified backgrounds (e.g. the matte background of pinned specimens). Examine the attributes of, or call summary on, the result of classify() to visualise the RGB values corresponding to colour-class ID numbers for classified images. Ignored if the focal object and background has been identified using procimg().

polygon

a data.frame of x-y coordinates delineating a closed polygon that separates the focal object from the background. Not required, and ignored, if the focal object outline is specified using procimg().

exclude

the portion of the scene to be excluded from the analysis, if any.

  • 'none': default

  • 'background': exclude everything outside the closed polygon specified using procimg(), or the argument polygon. Alternatively, if the background is relatively homogeneous the colour-class ID(s) uniquely corresponding to the background can be specified via bkgID, and subsequently excluded.

  • 'object': exclude everything inside the closed polygon specified using procimg(), or the argument polygon.

coldists

a data.frame specifying the visually-modelled chromatic (dS) and/or achromatic (dL) distances between colour-categories. The first two columns should be named 'c1' and 'c2', and specify all possible combinations of numeric colour-class ID's (viewable by calling summary(image, plot = TRUE) on a colour classified image), with the remaining columns named dS (for chromatic distances) and/or dL (for achromatic distances). See vismodel() and colspace() for visual modelling with spectral data.

hsl

data.frame specifying the hue, saturation, and luminance of color patch elements, as might be estimated via vismodel() and colspace(). The first column, named 'patch', should contain numeric color category IDs, with the remaining columns specifying one or more of 'hue' (angle, in radians), 'sat', and/or 'lum'.

Author

Thomas E. White thomas.white026@gmail.com

Details

You can customise the type of parallel processing used by this function with the future::plan() function. This works on all operating systems, as well as high performance computing (HPC) environment. Similarly, you can customise the way progress is shown with the progressr::handlers() functions (progress bar, acoustic feedback, nothing, etc.)

References

Endler, J. A. (2012). A framework for analysing colour pattern geometry: adjacent colours. Biological Journal Of The Linnean Society, 107(2), 233-253.

Endler, J. A., Cole G., Kranz A. (2018). Boundary Strength Analysis: Combining color pattern geometry and coloured patch visual properties for use in predicting behaviour and fitness. Methods in Ecology and Evolution, 9(12), 2334-2348.

Endler, J. A., & Mielke, P. (2005). Comparing entire colour patterns as birds see them. Biological Journal Of The Linnean Society, 86(4), 405-431.

See Also

classify(), summary.rimg(), procimg()

Examples

Run this code
# \donttest{
# Set a seed, for reproducibility
set.seed(153)

# Run the adjacency analysis on a single image of a butterfly
papilio <- getimg(system.file("testdata/images/butterflies/papilio.png", package = "pavo"))
papilio_class <- classify(papilio, kcols = 4)
papilio_adj <- adjacent(papilio_class, xscale = 100)

# Expand on the above, by including (fake) color distances and hsl values
# of colour elements in the image

# Generate fake color distances
distances <- data.frame(
  c1 = c(1, 1, 1, 2, 2, 3),
  c2 = c(2, 3, 4, 3, 4, 4),
  dS = c(5.3, 3.5, 5.7, 2.9, 6.1, 3.2),
  dL = c(5.5, 6.6, 3.3, 2.2, 4.4, 6.6)
)

# Generate some fake hue, saturation, luminance values
hsl_vals <- data.frame(
  patch = seq_len(4),
  hue = c(1.5, 2.2, 1.0, 0.5),
  lum = c(10, 5, 7, 3),
  sat = c(3.5, 1.1, 6.3, 1.3)
)

# Run the full analysis, including the white background's ID
papilio_adj <- adjacent(papilio_class,
  xscale = 100, bkgID = 1,
  coldists = distances, hsl = hsl_vals
)

# Run an adjacency analysis on multiple images.
# First load some images of coral snake colour patterns
snakes <- getimg(system.file("testdata/images/snakes", package = "pavo"))

# Automatically colour-classify the coral snake patterns
snakes_class <- classify(snakes, kcols = 3)

# Run the adjacency analysis, with varying real-world scales for each image
snakes_adj <- adjacent(snakes_class, xpts = 120, xscale = c(50, 55))
# }

Run the code above in your browser using DataLab