Learn R Programming

pavo (version 2.9.0)

sensdata: Retrieve or plot in-built spectral sensitivity data

Description

Retrieve (as an rspec object) or plot pavo's in-built spectral sensitivity data.

Usage

sensdata(
  visual = c("none", "all", "avg.uv", "avg.v", "bluetit", "ctenophorus", "star", "pfowl",
    "apis", "canis", "cie2", "cie10", "musca", "drosophila", "habronattus",
    "rhinecanthus"),
  achromatic = c("none", "all", "bt.dc", "ch.dc", "st.dc", "md.r1", "dm.r1", "ra.dc",
    "cf.r"),
  illum = c("none", "all", "bluesky", "D65", "forestshade"),
  trans = c("none", "all", "bluetit", "blackbird"),
  bkg = c("none", "all", "green"),
  plot = FALSE,
  ...
)

Value

An object of class rspec (when plot = FALSE), containing a wavelength column "wl" and spectral data binned at 1 nm intervals from 300-700 nm.

Arguments

visual

visual systems. Options are:

  • "none": no visual sensitivity data.

  • "all": all visual sensitivity data.

  • "apis": Honeybee Apis mellifera visual system.

  • "avg.uv": average avian UV system.

  • "avg.v": average avian V system.

  • "bluetit": Blue tit Cyanistes caeruleus visual system.

  • "canis": Canid Canis familiaris visual system.

  • "cie2": 2-degree colour matching functions for CIE models of human colour vision. Functions are linear transformations of the 2-degree cone fundamentals of Stockman & Sharpe (2000), as ratified by the CIE (2006).

  • "cie10": 10-degree colour matching functions for CIE models of human colour vision. Functions are linear transformations of the 10-degree cone fundamentals of Stockman & Sharpe (2000), as ratified by the CIE (2006).

  • "ctenophorus": Ornate dragon lizard Ctenophorus ornatus.

  • "musca": Housefly Musca domestica visual system.

  • 'drosophila': Vinegar fly Drosophila melanogaster (Sharkey et al. 2020).

  • "pfowl": Peafowl Pavo cristatus visual system.

  • "star": Starling Sturnus vulgaris visual system.

  • "habronattus": Jumping spider Habronattus pyrrithrix.

  • "rhinecanthus": Triggerfish Rhinecanthus aculeatus.

achromatic

the sensitivity data used to calculate luminance (achromatic) receptor stimulation. Options are:

  • "none": no achromatic sensitivity data.

  • "all": all achromatic sensitivity data.

  • "bt.dc": Blue tit Cyanistes caeruleus double cone.

  • "ch.dc": Chicken Gallus gallus double cone.

  • "st.dc": Starling Sturnus vulgaris double cone.

  • "cf.r": Canid Canis familiaris rod

  • "md.r1": Housefly Musca domestica R1-6 photoreceptor.

  • 'dm.r1': Vinegar fly Drosophila melanogaster R1-6 photoreceptor.

  • "ra.dc": Triggerfish Rhinecanthus aculeatus double cone.

illum

illuminants. Options are:

  • "none": no illuminant data.

  • "all": all background spectral data.

  • "bluesky" open blue sky.

  • "D65": standard daylight.

  • "forestshade" forest shade.

trans

Ocular transmission data. Options are:

  • "none": no transmission data.

  • "all": all transmission data.

  • "bluetit": blue tit Cyanistes caeruleus ocular transmission (from Hart et al. 2000).

  • "blackbird": blackbird Turdus merula ocular transmission (from Hart et al. 2000).

bkg

background spectra. Options are:

  • "none": no background spectral data.

  • "all": all background spectral data.

  • "green": green foliage.

plot

should the spectral data be plotted, or returned instead (defaults to FALSE)?

...

additional graphical options passed to plot.rspec() when plot = TRUE.

Author

Thomas E. White thomas.white026@gmail.com

Rafael Maia rm72@zips.uakron.edu

References

Sharkey, C. R., Blanco, J., Leibowitz, M. M., Pinto-Benito, D., & Wardill, T. J. (2020). The spectral sensitivity of Drosophila photoreceptors. Scientific reports, 10(1), 1-13.

Examples

Run this code
# Plot the honeybee's receptors
sensdata(visual = "apis", ylab = "Absorbance", plot = TRUE)

# Plot the average UV vs V avian receptors
sensdata(visual = c("avg.v", "avg.uv"), ylab = "Absorbance", plot = TRUE)

# Retrieve the CIE colour matching functions as an rspec object
ciedat <- sensdata(visual = c("cie2", "cie10"))

Run the code above in your browser using DataLab