Learn R Programming

paws (version 0.1.12)

machinelearning: Amazon Machine Learning

Description

Definition of the public APIs exposed by Amazon Machine Learning

Usage

machinelearning(config = list())

Value

A client for the service. You can call the service's operations using syntax like svc$operation(...), where svc is the name you've assigned to the client. The available operations are listed in the Operations section.

Arguments

config

Optional configuration of credentials, endpoint, and/or region.

Service syntax

svc <- machinelearning(
  config = list(
    credentials = list(
      creds = list(
        access_key_id = "string",
        secret_access_key = "string",
        session_token = "string"
      ),
      profile = "string"
    ),
    endpoint = "string",
    region = "string"
  )
)

Operations

add_tagsAdds one or more tags to an object, up to a limit of 10
create_batch_predictionGenerates predictions for a group of observations
create_data_source_from_rdsCreates a DataSource object from an Amazon Relational Database Service (Amazon RDS)
create_data_source_from_redshiftCreates a DataSource from a database hosted on an Amazon Redshift cluster
create_data_source_from_s3Creates a DataSource object
create_evaluationCreates a new Evaluation of an MLModel
create_ml_modelCreates a new MLModel using the DataSource and the recipe as information sources
create_realtime_endpointCreates a real-time endpoint for the MLModel
delete_batch_predictionAssigns the DELETED status to a BatchPrediction, rendering it unusable
delete_data_sourceAssigns the DELETED status to a DataSource, rendering it unusable
delete_evaluationAssigns the DELETED status to an Evaluation, rendering it unusable
delete_ml_modelAssigns the DELETED status to an MLModel, rendering it unusable
delete_realtime_endpointDeletes a real time endpoint of an MLModel
delete_tagsDeletes the specified tags associated with an ML object
describe_batch_predictionsReturns a list of BatchPrediction operations that match the search criteria in the request
describe_data_sourcesReturns a list of DataSource that match the search criteria in the request
describe_evaluationsReturns a list of DescribeEvaluations that match the search criteria in the request
describe_ml_modelsReturns a list of MLModel that match the search criteria in the request
describe_tagsDescribes one or more of the tags for your Amazon ML object
get_batch_predictionReturns a BatchPrediction that includes detailed metadata, status, and data file information for a Batch Prediction request
get_data_sourceReturns a DataSource that includes metadata and data file information, as well as the current status of the DataSource
get_evaluationReturns an Evaluation that includes metadata as well as the current status of the Evaluation
get_ml_modelReturns an MLModel that includes detailed metadata, data source information, and the current status of the MLModel
predictGenerates a prediction for the observation using the specified ML Model
update_batch_predictionUpdates the BatchPredictionName of a BatchPrediction
update_data_sourceUpdates the DataSourceName of a DataSource
update_evaluationUpdates the EvaluationName of an Evaluation
update_ml_modelUpdates the MLModelName and the ScoreThreshold of an MLModel

Examples

Run this code
if (FALSE) {
svc <- machinelearning()
svc$add_tags(
  Foo = 123
)
}

Run the code above in your browser using DataLab