Provides translation of the input content from the source language to the target language.
translate(
config = list(),
credentials = list(),
endpoint = NULL,
region = NULL
)
A client for the service. You can call the service's operations using
syntax like svc$operation(...)
, where svc
is the name you've assigned
to the client. The available operations are listed in the
Operations section.
Optional configuration of credentials, endpoint, and/or region.
credentials:
creds:
access_key_id: AWS access key ID
secret_access_key: AWS secret access key
session_token: AWS temporary session token
profile: The name of a profile to use. If not given, then the default profile is used.
anonymous: Set anonymous credentials.
endpoint: The complete URL to use for the constructed client.
region: The AWS Region used in instantiating the client.
close_connection: Immediately close all HTTP connections.
timeout: The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds.
s3_force_path_style: Set this to true
to force the request to use path-style addressing, i.e. http://s3.amazonaws.com/BUCKET/KEY
.
sts_regional_endpoint: Set sts regional endpoint resolver to regional or legacy https://docs.aws.amazon.com/sdkref/latest/guide/feature-sts-regionalized-endpoints.html
Optional credentials shorthand for the config parameter
creds:
access_key_id: AWS access key ID
secret_access_key: AWS secret access key
session_token: AWS temporary session token
profile: The name of a profile to use. If not given, then the default profile is used.
anonymous: Set anonymous credentials.
Optional shorthand for complete URL to use for the constructed client.
Optional shorthand for AWS Region used in instantiating the client.
svc <- translate(
config = list(
credentials = list(
creds = list(
access_key_id = "string",
secret_access_key = "string",
session_token = "string"
),
profile = "string",
anonymous = "logical"
),
endpoint = "string",
region = "string",
close_connection = "logical",
timeout = "numeric",
s3_force_path_style = "logical",
sts_regional_endpoint = "string"
),
credentials = list(
creds = list(
access_key_id = "string",
secret_access_key = "string",
session_token = "string"
),
profile = "string",
anonymous = "logical"
),
endpoint = "string",
region = "string"
)
create_parallel_data | Creates a parallel data resource in Amazon Translate by importing an input file from Amazon S3 |
delete_parallel_data | Deletes a parallel data resource in Amazon Translate |
delete_terminology | A synchronous action that deletes a custom terminology |
describe_text_translation_job | Gets the properties associated with an asynchronous batch translation job including name, ID, status, source and target languages, input/output S3 buckets, and so on |
get_parallel_data | Provides information about a parallel data resource |
get_terminology | Retrieves a custom terminology |
import_terminology | Creates or updates a custom terminology, depending on whether one already exists for the given terminology name |
list_languages | Provides a list of languages (RFC-5646 codes and names) that Amazon Translate supports |
list_parallel_data | Provides a list of your parallel data resources in Amazon Translate |
list_tags_for_resource | Lists all tags associated with a given Amazon Translate resource |
list_terminologies | Provides a list of custom terminologies associated with your account |
list_text_translation_jobs | Gets a list of the batch translation jobs that you have submitted |
start_text_translation_job | Starts an asynchronous batch translation job |
stop_text_translation_job | Stops an asynchronous batch translation job that is in progress |
tag_resource | Associates a specific tag with a resource |
translate_document | Translates the input document from the source language to the target language |
translate_text | Translates input text from the source language to the target language |
untag_resource | Removes a specific tag associated with an Amazon Translate resource |
update_parallel_data | Updates a previously created parallel data resource by importing a new input file from Amazon S3 |
if (FALSE) {
svc <- translate()
svc$create_parallel_data(
Foo = 123
)
}
Run the code above in your browser using DataLab