Learn R Programming

paws (version 0.9.0)

bedrockagent: Agents for Amazon Bedrock

Description

Describes the API operations for creating and managing Amazon Bedrock agents.

Usage

bedrockagent(
  config = list(),
  credentials = list(),
  endpoint = NULL,
  region = NULL
)

Value

A client for the service. You can call the service's operations using syntax like svc$operation(...), where svc is the name you've assigned to the client. The available operations are listed in the Operations section.

Arguments

config

Optional configuration of credentials, endpoint, and/or region.

  • credentials:

    • creds:

      • access_key_id: AWS access key ID

      • secret_access_key: AWS secret access key

      • session_token: AWS temporary session token

    • profile: The name of a profile to use. If not given, then the default profile is used.

    • anonymous: Set anonymous credentials.

  • endpoint: The complete URL to use for the constructed client.

  • region: The AWS Region used in instantiating the client.

  • close_connection: Immediately close all HTTP connections.

  • timeout: The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds.

  • s3_force_path_style: Set this to true to force the request to use path-style addressing, i.e. http://s3.amazonaws.com/BUCKET/KEY.

  • sts_regional_endpoint: Set sts regional endpoint resolver to regional or legacy https://docs.aws.amazon.com/sdkref/latest/guide/feature-sts-regionalized-endpoints.html

credentials

Optional credentials shorthand for the config parameter

  • creds:

    • access_key_id: AWS access key ID

    • secret_access_key: AWS secret access key

    • session_token: AWS temporary session token

  • profile: The name of a profile to use. If not given, then the default profile is used.

  • anonymous: Set anonymous credentials.

endpoint

Optional shorthand for complete URL to use for the constructed client.

region

Optional shorthand for AWS Region used in instantiating the client.

Service syntax

svc <- bedrockagent(
  config = list(
    credentials = list(
      creds = list(
        access_key_id = "string",
        secret_access_key = "string",
        session_token = "string"
      ),
      profile = "string",
      anonymous = "logical"
    ),
    endpoint = "string",
    region = "string",
    close_connection = "logical",
    timeout = "numeric",
    s3_force_path_style = "logical",
    sts_regional_endpoint = "string"
  ),
  credentials = list(
    creds = list(
      access_key_id = "string",
      secret_access_key = "string",
      session_token = "string"
    ),
    profile = "string",
    anonymous = "logical"
  ),
  endpoint = "string",
  region = "string"
)

Operations

associate_agent_collaboratorMakes an agent a collaborator for another agent
associate_agent_knowledge_baseAssociates a knowledge base with an agent
create_agentCreates an agent that orchestrates interactions between foundation models, data sources, software applications, user conversations, and APIs to carry out tasks to help customers
create_agent_action_groupCreates an action group for an agent
create_agent_aliasCreates an alias of an agent that can be used to deploy the agent
create_data_sourceConnects a knowledge base to a data source
create_flowCreates a prompt flow that you can use to send an input through various steps to yield an output
create_flow_aliasCreates an alias of a flow for deployment
create_flow_versionCreates a version of the flow that you can deploy
create_knowledge_baseCreates a knowledge base
create_promptCreates a prompt in your prompt library that you can add to a flow
create_prompt_versionCreates a static snapshot of your prompt that can be deployed to production
delete_agentDeletes an agent
delete_agent_action_groupDeletes an action group in an agent
delete_agent_aliasDeletes an alias of an agent
delete_agent_versionDeletes a version of an agent
delete_data_sourceDeletes a data source from a knowledge base
delete_flowDeletes a flow
delete_flow_aliasDeletes an alias of a flow
delete_flow_versionDeletes a version of a flow
delete_knowledge_baseDeletes a knowledge base
delete_knowledge_base_documentsDeletes documents from a data source and syncs the changes to the knowledge base that is connected to it
delete_promptDeletes a prompt or a version of it, depending on whether you include the promptVersion field or not
disassociate_agent_collaboratorDisassociates an agent collaborator
disassociate_agent_knowledge_baseDisassociates a knowledge base from an agent
get_agentGets information about an agent
get_agent_action_groupGets information about an action group for an agent
get_agent_aliasGets information about an alias of an agent
get_agent_collaboratorRetrieves information about an agent's collaborator
get_agent_knowledge_baseGets information about a knowledge base associated with an agent
get_agent_versionGets details about a version of an agent
get_data_sourceGets information about a data source
get_flowRetrieves information about a flow
get_flow_aliasRetrieves information about a flow
get_flow_versionRetrieves information about a version of a flow
get_ingestion_jobGets information about a data ingestion job
get_knowledge_baseGets information about a knoweldge base
get_knowledge_base_documentsRetrieves specific documents from a data source that is connected to a knowledge base
get_promptRetrieves information about the working draft (DRAFT version) of a prompt or a version of it, depending on whether you include the promptVersion field or not
ingest_knowledge_base_documentsIngests documents directly into the knowledge base that is connected to the data source
list_agent_action_groupsLists the action groups for an agent and information about each one
list_agent_aliasesLists the aliases of an agent and information about each one
list_agent_collaboratorsRetrieve a list of an agent's collaborators
list_agent_knowledge_basesLists knowledge bases associated with an agent and information about each one
list_agentsLists the agents belonging to an account and information about each agent
list_agent_versionsLists the versions of an agent and information about each version
list_data_sourcesLists the data sources in a knowledge base and information about each one
list_flow_aliasesReturns a list of aliases for a flow
list_flowsReturns a list of flows and information about each flow
list_flow_versionsReturns a list of information about each flow
list_ingestion_jobsLists the data ingestion jobs for a data source
list_knowledge_base_documentsRetrieves all the documents contained in a data source that is connected to a knowledge base
list_knowledge_basesLists the knowledge bases in an account
list_promptsReturns either information about the working draft (DRAFT version) of each prompt in an account, or information about of all versions of a prompt, depending on whether you include the promptIdentifier field or not
list_tags_for_resourceList all the tags for the resource you specify
prepare_agentCreates a DRAFT version of the agent that can be used for internal testing
prepare_flowPrepares the DRAFT version of a flow so that it can be invoked
start_ingestion_jobBegins a data ingestion job
stop_ingestion_jobStops a currently running data ingestion job
tag_resourceAssociate tags with a resource
untag_resourceRemove tags from a resource
update_agentUpdates the configuration of an agent
update_agent_action_groupUpdates the configuration for an action group for an agent
update_agent_aliasUpdates configurations for an alias of an agent
update_agent_collaboratorUpdates an agent's collaborator
update_agent_knowledge_baseUpdates the configuration for a knowledge base that has been associated with an agent
update_data_sourceUpdates the configurations for a data source connector
update_flowModifies a flow
update_flow_aliasModifies the alias of a flow
update_knowledge_baseUpdates the configuration of a knowledge base with the fields that you specify
update_promptModifies a prompt in your prompt library
validate_flow_definitionValidates the definition of a flow

Examples

Run this code
if (FALSE) {
svc <- bedrockagent()
svc$associate_agent_collaborator(
  Foo = 123
)
}

Run the code above in your browser using DataLab