Usage
llsImpute(Matrix, k = 10, center = FALSE, completeObs = TRUE, correlation = "pearson", allVariables = FALSE, maxSteps = 100, xval = NULL, verbose = FALSE, ...)
Arguments
Matrix
matrix
-- Data containing the variables
(genes) in columns and observations (samples) in rows. The data
may contain missing values, denoted as NA
.
k
numeric
-- Cluster size, this is the number of
similar genes used for regression.
center
boolean
-- Mean center the data if TRUE
completeObs
boolean
-- Return the estimated complete
observations if TRUE. This is the input data with NA values
replaced by the estimated values.
correlation
character
-- How to calculate the
distance between genes. One out of pearson | kendall | spearman ,
see also help("cor").
allVariables
boolean
-- Use only complete genes to
do the regression if TRUE, all genes if FALSE.
maxSteps
numeric
-- Maximum number of iteration
steps if allGenes = TRUE.
xval
numeric
Use LLSimpute for cross
validation. xval is the index of the gene to estimate, all other
incomplete genes will be ignored if this parameter is set. We do
not consider them in the cross-validation.
verbose
boolean
-- Print step number and relative
change if TRUE and allVariables = TRUE
...
Reserved for parameters used in future version of the
algorithm