Learn R Programming

pct (version 0.9.1)

uptake_pct_godutch: Calculate cycling uptake for UK 'Go Dutch' scenario

Description

This function implements the uptake model described in the original Propensity to Cycle Tool paper (Lovelace et al. 2017): https://doi.org/10.5198/jtlu.2016.862

Usage

uptake_pct_godutch(
  distance,
  gradient,
  alpha = -3.959 + 2.523,
  d1 = -0.5963 - 0.07626,
  d2 = 1.866,
  d3 = 0.00805,
  h1 = -0.271,
  i1 = 0.009394,
  i2 = -0.05135,
  verbose = FALSE
)

Arguments

distance

Vector distance numeric values of routes in km (switches to km if more than 100).

gradient

Vector gradient numeric values of routes.

alpha

The intercept

d1

Distance term 1

d2

Distance term 2

d3

Distance term 3

h1

Hilliness term 1

i1

Distance-hilliness interaction term 1

i2

Distance-hilliness interaction term 2

verbose

Print messages? FALSE by default.

Details

See uptake_pct_govtarget().

Examples

Run this code
# NOT RUN {
# https://www.jtlu.org/index.php/jtlu/article/download/862/1381/4359
# Equation 1B:
distance = 15
gradient = 2
logit = -3.959 + 2.523 +
  ((-0.5963 - 0.07626) * distance) +
  (1.866 * sqrt(distance)) +
  (0.008050 * distance^2) +
  (-0.2710 * gradient) +
  (0.009394 * distance * gradient) +
  (-0.05135 * sqrt(distance) * gradient)
logit
# Result: -3.144098

pcycle = exp(logit) / (1 + exp(logit))
# Result: 0.04132445
boot::inv.logit(logit)
uptake_pct_godutch(distance, gradient,
  alpha = -3.959 + 2.523, d1 = -0.5963 - 0.07626,
  d2 = 1.866, d3 = 0.008050, h1 = -0.2710, i1 = 0.009394, i2 = -0.05135
)
# these are the default values
uptake_pct_godutch(distance, gradient)
l = routes_fast_leeds
pcycle_scenario = uptake_pct_godutch(l$length, l$av_incline)
plot(l$length, pcycle_scenario)
# }

Run the code above in your browser using DataLab