Rdocumentation
powered by
Learn R Programming
pendensity (version 0.2.13)
Density Estimation with a Penalized Mixture Approach
Description
Estimation of univariate (conditional) densities using penalized B-splines with automatic selection of optimal smoothing parameter.
Copy Link
Link to current version
Version
Version
0.2.13
0.2.10
0.2.9
0.2.8
0.2.7
0.2.6
0.2.5
0.2.3
0.2.1
0.1.1
Install
install.packages('pendensity')
Monthly Downloads
347
Version
0.2.13
License
GPL (>= 2)
Maintainer
Christian Schellhase
Last Published
April 7th, 2019
Functions in pendensity (0.2.13)
Search all functions
my.positive.definite.solve
my.positive.definite.solve
Derv1
Calculating the first derivative of the pendensity likelihood function w.r.t. parameter beta
Derv2
Calculating the second order derivative with and without penalty
my.AIC
Calculating the AIC value
my.bspline
my.bspline
bias.par
Calculating the bias of the parameter beta
print.pendensity
Printing the main results of the (conditional) penalized density estimation
ck
Calculating the actual weights ck
pendenForm
Formula interpretation and data transfer
pendensity-package
The package 'pendensity' offers routines for estimating penalized unconditional and conditional (on factor groups) densities.
test.equal
Testing pairwise equality of densities
variance.par
Calculating the variance of the parameters
variance.val
Calculating variance and standard deviance of each observation.
distr.func
These functions are used for calculating the empirical and theoretical distribution functions.
dpendensity
Calculating the fitted density or distribution
pendensity
Calculating penalized density
plot.pendensity
Plotting estimated penalized densities
Allianz
Daily final prices (DAX) of the German stock Allianz in the years 2006 and 2007
D.m
Calculating the penalty matrix
new.lambda
Calculating new penalty parameter lambda
pen.log.like
Calculating the log likelihood
L.mat
Calculates the difference matrix of order m
DeutscheBank
Daily final prices (DAX) of the German stock Deutsche Bank in the years 2006 and 2007
f.hat
Calculating the actual fitted values 'f.hat' of the estimated density function f for the response y
marg.likelihood
Calculating the marginal likelihood
new.beta.val
Calculating the new parameter beta