Learn R Programming

performance (version 0.8.0)

r2: Compute the model's R2

Description

Calculate the R2, also known as the coefficient of determination, value for different model objects. Depending on the model, R2, pseudo-R2, or marginal / adjusted R2 values are returned.

Usage

r2(model, ...)

# S3 method for default r2(model, ci = NULL, ci_method = "analytical", verbose = TRUE, ...)

# S3 method for merMod r2(model, tolerance = 1e-05, ...)

Arguments

model

A statistical model.

...

Arguments passed down to the related r2-methods.

ci

Confidence Interval (CI) level. Default is NULL. Confidence intervals for R2 can be calculated based on different methods, see ci_method.

ci_method

Method for constructing the R2 confidence interval. Options are "analytical" for sampling-theory-based frequentist intervals and "bootstrap" for bootstrap intervals. Analytical intervals are not available for all models. For Bayesian models, r2_bayes() is used.

verbose

Logical. Should details about R2 and CI methods be given (TRUE) or not (FALSE)?

tolerance

Tolerance for singularity check of random effects, to decide whether to compute random effect variances for the conditional r-squared or not. Indicates up to which value the convergence result is accepted. When r2_nakagawa() returns a warning, stating that random effect variances can't be computed (and thus, the conditional r-squared is NA), decrease the tolerance-level. See also check_singularity().

Value

Returns a list containing values related to the most appropriate R2 for the given model (or NULL if no R2 could be extracted). See the list below:

See Also

r2_bayes(), r2_coxsnell(), r2_kullback(), r2_loo(), r2_mcfadden(), r2_nagelkerke(), r2_nakagawa(), r2_tjur(), r2_xu() and r2_zeroinflated().

Examples

Run this code
# NOT RUN {
model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
r2(model)

if (require("lme4")) {
  model <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
  r2(model)
}
# }

Run the code above in your browser using DataLab