## data
data("emergencycost")
## Create a set of 2000 permutations
set.seed(42)
pmat = Pmat(np = 2000, n = nrow(emergencycost))
sfmat = Pmat(np = 2000, n = nrow(emergencycost), type = "signflip")
## centrering the covariate to the mean
emergencycost$LOSc <- scale(emergencycost$LOS, scale = FALSE)
## ANCOVA
mod_cost_0 <- aovperm(cost ~ LOSc*sex*insurance, data = emergencycost, np = 2000)
mod_cost_1 <- aovperm(cost ~ LOSc*sex*insurance, data = emergencycost, P = pmat)
mod_cost_2 <- aovperm(cost ~ LOSc*sex*insurance, data = emergencycost, P = pmat)
mod_cost_3 <- aovperm(cost ~ LOSc*sex*insurance, data = emergencycost, P = sfmat)
mod_cost_4 <- aovperm(cost ~ LOSc*sex*insurance, data = emergencycost,type="signflip")
## Same p-values for both models 1 and 2 but different of model 0
mod_cost_0
mod_cost_1
mod_cost_2
mod_cost_3
mod_cost_4
Run the code above in your browser using DataLab