# Prepare Data
data("mtcars")
#Correlation Matrix
partialcor.table(mtcars[,c("mpg","cyl","disp")], z = mtcars$hp)
partialcor.table(mtcars[,c("mpg","cyl","disp")], z = mtcars[,c("hp","wt")])
partialcor.table(mtcars[,c("mpg","cyl","disp")], z = mtcars[,c("hp","wt")],
dig = 3)
partialcor.table(mtcars[,c("mpg","cyl","disp")], z = mtcars[,c("hp","wt")],
dig = 3, correlation = "spearman")
partialcor.table(mtcars[,c("mpg","cyl","disp")], z = mtcars[,c("hp","wt")],
type = "manuscript", dig = 3)
partialcor.table(mtcars[,c("mpg","cyl","disp")], z = mtcars[,c("hp","wt")],
type = "manuscriptBig")
table1 <- partialcor.table(mtcars[,c("mpg","cyl","disp")],
z = mtcars[,c("hp","wt")], type = "latex")
table2 <- partialcor.table(mtcars[,c("mpg","cyl","disp")],
z = mtcars[,c("hp","wt")], type = "latexSPSS")
table3 <- partialcor.table(mtcars[,c("mpg","cyl","disp")],
z = mtcars[,c("hp","wt")], type = "manuscriptLatex")
table4 <- partialcor.table(mtcars[,c("mpg","cyl","disp")],
z = mtcars[,c("hp","wt")], type = "manuscriptBigLatex")
partialcor.table(mtcars[,c("mpg","cyl","disp")], mtcars[,c("drat","qsec")],
mtcars[,c("hp","wt")])
partialcor.table(mtcars[,c("mpg","cyl","disp")], mtcars[,c("drat","qsec")],
mtcars[,c("hp","wt")], type = "manuscript", dig = 3)
Run the code above in your browser using DataLab