powered by
Normal Probability (P-P) Plot.
ppPlot(model)
Normal probability (P-P) plot.
The model object of a linear regression model fit using the lm() function.
lm()
A normal probability (P-P) plot compares the empirical cumulative distribution to the theoretical cumulative distribution.
https://www.r-bloggers.com/2009/12/r-tutorial-series-graphic-analysis-of-regression-assumptions/
Other plot: addText(), plot2WayInteraction(), semPlotInteraction(), vwReg()
addText()
plot2WayInteraction()
semPlotInteraction()
vwReg()
Other multipleRegression: lmCombine(), plot2WayInteraction(), semPlotInteraction(), update_nested()
lmCombine()
update_nested()
# Prepare Data predictor1 <- rnorm(100) predictor2 <- rnorm(100) outcome <- rnorm(100) # Fit Model lmModel <- lm(outcome ~ predictor1 + predictor2) # P-P Plot ppPlot(lmModel)
Run the code above in your browser using DataLab