Learn R Programming

phangorn (version 0.0-1)

pml: Likelihood of a tree.

Description

optim.pml computes the likelihood of a phylogenetic tree given a sequence alignment and a model. optim.pml optimizes the different model parameters.

Usage

pml(tree, data, bf=rep(1/length(levels),length(levels)), shape=1, 
    k=1, Q=rep(1,length(levels)*(length(levels)-1)/2), levels=attr(data,"levels"), 
	inv=0, g=NULL, w=NULL, eig=NULL, INV=NULL, ll.0=NULL, ...)     
optim.pml(object, optNni=FALSE, optBf=FALSE, optQ=FALSE,
    optInv=FALSE, optGamma=FALSE, optEdge=TRUE, control = list(maxit=10, eps=0.001))

Arguments

tree
A phylogenetic tree, object of class phylo.
data
The (DNA) alignment.
bf
Base frequencies.
shape
Shape parameter of the gamma distribution.
k
Number of intervalls of the discrete gamma distribution.
Q
A vector containing the lower triangular part of the rate matrix.
levels
Factor levels of the data.
inv
Proportion of invariable sites.
g
Rate.
w
Weight of the mixture.
eig
The eigenvalues and eigenvectors of the transition matrix. .
INV
For internal use.
object
An object of class pml.
optNni
Logical value indicating whether toplogy gets optimized (NNI).
optBf
Logical value indicating whether base frequencies gets optimized.
optQ
Logical value indicating whether rate matrix gets optimized. For dna this means: FALSE=Jukes-Cantor, TRUE=GTR
optInv
Logical value indicating whether proportion of variable size gets optimized.
optGamma
Logical value indicating whether gamma rate parameter gets optimized.
optEdge
Logical value indicating the edge lengths gets optimized.
control
A list of parameters for controlling the fitting process.
ll.0
For internal use
...
Further arguments passed to or from other methods.

Value

  • Returns a list of class ll.phylo
  • logLikLog likelihood of the tree.
  • siteLikSite log likelihoods.
  • rootlikelihood in the root node.
  • weightWeight of the site patterns.

Details

The input variables w, g, eig, INV are used to speed up computation, especially during the optimising used in optim.pml, but are not intended to be used by the enduser. The toppology search uses a nearest neighbour interchange (NNI) and is similar to phyML.

References

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maxumum likelihood approach. Journal of Molecular Evolution, 17, 368--376. Felsenstein, J. (2004). Inferring Phylogenies. Sinauer Associates, Sunderland. Yang, Z. (2006). Computational Molecular evolution. Oxford University Press, Oxford.

See Also

For a different implementation see mlphylo.

Examples

Run this code
example(NJ)
# Jukes-Cantor + Gamma + I   
  fitJC <- pml(tree, Laurasiatherian, k=4, inv=.25) 
  summary(fitJC)
# just optimise edge length parameter     
  fitJC <- optim.pml(fitJC) 
  summary(fitJC)
  plot(fitJC$tree)
  
# optimise parameter     
  fitJC <- optim.pml(fitJC, optNni=TRUE, optGamma=TRUE, optInv=TRUE) 
  summary(fitJC)
# F81 + Gamma + I - model
  fitF81 <- optim.pml(fitJC, optNni=TRUE, optGamma=TRUE, optInv=TRUE, optBf=TRUE)
  summary(fitF81) 
# GTR + Gamma + I - model
  fitGTR <- optim.pml(fitF81, optNni=TRUE, optGamma=TRUE, optInv=TRUE, optBf=TRUE, optQ=TRUE) 
  summary(fitGTR)

# 2-state data (RY-coded)  
    
  dat <- as.character(Laurasiatherian)
  # RY-coding
  dat[dat=="a"] <- "r"
  dat[dat=="g"] <- "r"
  dat[dat=="c"] <- "y"
  dat[dat=="t"] <- "y"
  dat <- phyDat(dat, levels=c("r","y"))
  fit2ST <- pml(tree, dat, k=4, inv=.25) 
  fit2ST <- optim.pml(fit2ST,optNni=TRUE, optGamma=TRUE, optInv=TRUE) 
  
  methods(class="pml")

Run the code above in your browser using DataLab