Learn R Programming

pharmr (version 1.4.0)

sample_parameters_uniformly: sample_parameters_uniformly

Description

Sample parameter vectors using uniform sampling

Each parameter value will be randomly sampled from a uniform distribution with the bounds being estimate ± estimate * fraction.

Usage

sample_parameters_uniformly(
  model,
  parameter_estimates,
  fraction = 0.1,
  force_posdef_samples = NULL,
  n = 1,
  seed = NULL,
  scale = "normal"
)

Value

(data.frame) samples

Arguments

model

(Model) Pharmpy model

parameter_estimates

(array) Parameter estimates for parameters to use

fraction

(numeric) Fraction of estimate value to use for distribution bounds

force_posdef_samples

(numeric (optional)) Number of samples to reject before forcing variability parameters to give positive definite covariance matrices.

n

(numeric) Number of samples

seed

(numeric (optional)) Random number generator or seed

scale

(str) Scale to perform sampling on. Valid options are 'normal' and 'UCP'

See Also

sample_parameters_from_covariance_matrix : Sample parameter vectors using the

uncertainty covariance matrix

sample_individual_estimates : Sample individual estiates given their covariance

Examples

Run this code
if (FALSE) {
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
rng <- create_rng(23)
pe <- results$parameter_estimates
sample_parameters_uniformly(model, pe, n=3, seed=rng)
}

Run the code above in your browser using DataLab