powered by
Basic functions to do transformation / normalization of phenotypes.
transformation(x, transformations=c("nothing","log","sqrt","reciprocal","probit", "logit"), ..., verbose=TRUE)
data matrix with measurements, Rows: Traits/Phenotypes columns: Individuals.
which function should be used to transform the data:
nothing - no data transformation performed.
log - log(data)
log
sqrt - sqrt(data)
sqrt
reciprocal - 1/(data)
probit - probit transformation
probit
logit - logit transformation
logit
Passed to the underlying test function.
Be verbose.
List with matrices.
cross.saturate - Saturate existing map.
cross.saturate
cross.denovo - Create de novo genetic map or chromosome assignment vector.
cross.denovo
# NOT RUN { data <- matrix(runif(1000),10,100) resA <- transformation(data, c("log","logit")) resB <- transformation(data, c("reciprocal","probit")) # }
Run the code above in your browser using DataLab