data("CA_NS6")
d <- CA_NS6
nptperyear <- 23
INPUT <- check_input(d$t, d$y, d$w,
QC_flag = d$QC_flag,
nptperyear = nptperyear, south = FALSE,
maxgap = nptperyear / 4, alpha = 0.02, wmin = 0.2
)
# plot_input(INPUT)
wFUN <- "wTSM"
# all year as a whole
options = list(rFUN = "smooth_wWHIT", wFUN = wFUN, lambda = 10)
brks <- season(INPUT, lambda = 10)
plot_season(INPUT, brks, d)
brks2 = season_input(INPUT, options)
all.equal(brks2, brks)
c(d_fit, info_peak) %<-% roughFit(INPUT)
d_season = find_season.peaks(d_fit, info_peak)
c(t, ypred) %<-% d_fit[, .(t, ziter2)]
d_season = find_season.default(ypred, t)
all.equal(brks$dt, d_season)
# opt <- .options$season
# brks$fit - d_fit # function passed test
# curve fitting by year
brks_mov <- season_mov(INPUT,
options = list(
rFUN = "smooth_wWHIT", wFUN = wFUN,
lambda = 10,
r_min = 0.05, ypeak_min = 0.05,
verbose = TRUE
)
)
plot_season(INPUT, brks_mov)
rfit <- brks2rfit(brks_mov)
r <- get_pheno(rfit)
Run the code above in your browser using DataLab