if (FALSE) {
library("phenology")
RMU.names.AtlanticW <- data.frame(mean=c("Yalimapo.French.Guiana",
"Galibi.Suriname",
"Irakumpapy.French.Guiana"),
se=c("se_Yalimapo.French.Guiana",
"se_Galibi.Suriname",
"se_Irakumpapy.French.Guiana"),
density=c("density_Yalimapo.French.Guiana",
"density_Galibi.Suriname",
"density_Irakumpapy.French.Guiana"))
data.AtlanticW <- data.frame(Year=c(1990:2000),
Yalimapo.French.Guiana=c(2076, 2765, 2890, 2678, NA,
6542, 5678, 1243, NA, 1566, 1566),
se_Yalimapo.French.Guiana=c(123.2, 27.7, 62.5, 126, NA,
230, 129, 167, NA, 145, 20),
density_Yalimapo.French.Guiana=rep("dnorm", 11),
Galibi.Suriname=c(276, 275, 290, NA, 267,
542, 678, NA, 243, 156, 123),
se_Galibi.Suriname=c(22.3, 34.2, 23.2, NA, 23.2,
4.3, 2.3, NA, 10.3, 10.1, 8.9),
density_Galibi.Suriname=rep("dnorm", 11),
Irakumpapy.French.Guiana=c(1076, 1765, 1390, 1678, NA,
3542, 2678, 243, NA, 566, 566),
se_Irakumpapy.French.Guiana=c(23.2, 29.7, 22.5, 226, NA,
130, 29, 67, NA, 15, 20),
density_Irakumpapy.French.Guiana=rep("dnorm", 11)
)
cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
colname.year="Year", model.trend="Constant",
model.SD="Zero")
cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
colname.year="Year", model.trend="Constant",
model.SD="Zero",
control=list(trace=1, REPORT=100, maxit=500, parscale = c(3000, -0.2, 0.6)))
cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
colname.year="Year", model.trend="Constant",
model.SD="Zero", method=c("Nelder-Mead","BFGS"),
control = list(trace = 0, REPORT = 100, maxit = 500,
parscale = c(3000, -0.2, 0.6)))
expo <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
colname.year="Year", model.trend="Exponential",
model.SD="Zero", method=c("Nelder-Mead","BFGS"),
control = list(trace = 0, REPORT = 100, maxit = 500,
parscale = c(6000, -0.05, -0.25, 0.6)))
YS <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
colname.year="Year", model.trend="Year-specific", method=c("Nelder-Mead","BFGS"),
model.SD="Zero")
YS1 <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
colname.year="Year", model.trend="Year-specific", method=c("Nelder-Mead","BFGS"),
model.SD="Zero", model.rookeries="First-order")
YS1_cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
colname.year="Year", model.trend="Year-specific",
model.SD="Constant", model.rookeries="First-order",
parameters=YS1$par, method=c("Nelder-Mead","BFGS"))
YS2 <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
colname.year="Year", model.trend="Year-specific",
model.SD="Zero", model.rookeries="Second-order",
parameters=YS1$par, method=c("Nelder-Mead","BFGS"))
YS2_cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
colname.year="Year", model.trend="Year-specific",
model.SD="Constant", model.rookeries="Second-order",
parameters=YS1_cst$par, method=c("Nelder-Mead","BFGS"))
compare_AIC(Constant=cst, Exponential=expo,
YearSpecific=YS)
compare_AIC(YearSpecific_ProportionsFirstOrder_Zero=YS1,
YearSpecific_ProportionsFirstOrder_Constant=YS1_cst)
compare_AIC(YearSpecific_ProportionsConstant=YS,
YearSpecific_ProportionsFirstOrder=YS1,
YearSpecific_ProportionsSecondOrder=YS2)
compare_AIC(YearSpecific_ProportionsFirstOrder=YS1_cst,
YearSpecific_ProportionsSecondOrder=YS2_cst)
# Example of different types of plots
plot(cst, main="Use of different beaches along the time", what="total",
ylim=c(0, 4000))
plot(cst, main="Use of different beaches along the time", what = "proportions",
replicate.CI=0)
plot(cst, main="Use of different beaches along the time", what = "numbers",
aggregate="model", ylim=c(0, 4000), replicate.CI=0)
plot(cst, main="Use of different beaches along the time", what = "numbers",
aggregate="both", ylim=c(0, 11000), replicate.CI=0)
plot(expo, main="Use of different beaches along the time", what="total")
plot(YS2_cst, main="Use of different beaches along the time", what="total")
plot(YS1, main="Use of different beaches along the time")
plot(YS1_cst, main="Use of different beaches along the time")
plot(YS1_cst, main="Use of different beaches along the time", what="numbers")
# Gamma distribution should be used for MCMC outputs
RMU.names.AtlanticW <- data.frame(mean=c("Yalimapo.French.Guiana",
"Galibi.Suriname",
"Irakumpapy.French.Guiana"),
se=c("se_Yalimapo.French.Guiana",
"se_Galibi.Suriname",
"se_Irakumpapy.French.Guiana"),
density=c("density_Yalimapo.French.Guiana",
"density_Galibi.Suriname",
"density_Irakumpapy.French.Guiana"),
stringsAsFactors = FALSE)
data.AtlanticW <- data.frame(Year=c(1990:2000),
Yalimapo.French.Guiana=c(2076, 2765, 2890, 2678, NA,
6542, 5678, 1243, NA, 1566, 1566),
se_Yalimapo.French.Guiana=c(123.2, 27.7, 62.5, 126, NA,
230, 129, 167, NA, 145, 20),
density_Yalimapo.French.Guiana=rep("dgamma", 11),
Galibi.Suriname=c(276, 275, 290, NA, 267,
542, 678, NA, 243, 156, 123),
se_Galibi.Suriname=c(22.3, 34.2, 23.2, NA, 23.2,
4.3, 2.3, NA, 10.3, 10.1, 8.9),
density_Galibi.Suriname=rep("dgamma", 11),
Irakumpapy.French.Guiana=c(1076, 1765, 1390, 1678, NA,
3542, 2678, 243, NA, 566, 566),
se_Irakumpapy.French.Guiana=c(23.2, 29.7, 22.5, 226, NA,
130, 29, 67, NA, 15, 20),
density_Irakumpapy.French.Guiana=rep("dgamma", 11), stringsAsFactors = FALSE
)
cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
colname.year="Year", model.trend="Constant",
model.SD="Zero")
}
Run the code above in your browser using DataLab