Function of the package phenology to fit parameters to timeseries.
To fit data, the syntax is :
Result <- fit_phenology(data=dataset, fitted.parameters=par, fixed.parameters=pfixed, trace=1, hessian=TRUE)
or if no parameter is fixed :
Result <- fit_phenology(data=dataset, fitted.parameters=par)
Add trace=1 [default] to have information on the fit progression or trace=0 to hide information on the fit progression.
hessian = FALSE does not estimate Hessian matrix and SE of parameters.
If the parameter Theta is fixed to +Inf, a Poissonian model of daily nest distribution is implemented.
Special section about cofactors:
cofactors must be a data.frame with a column Date and a column for each cofactor
add.cofactors are the names of the column of parameter cofactors to use as a cofactor;
The model is then: parameter[add.cofactors] * cofactor[, add.cofactors]
If the name of the parameter is paste0(add.cofactors, "multi"), then the model is:
parameter[paste0(add.cofactors, "multi")] * cofactor[, add.cofactors] *
(number of nests without cofactor)
About parallel computing:
Set options mc.cores and forking to tell what sort of parallel computing
Example:
options(mc.cores = detectCores())
options(forking = FALSE)
fit_phenology(
data = file.choose(),
fitted.parameters = NULL,
fixed.parameters = NULL,
model_before = NULL,
store.intermediate = FALSE,
file.intermediate = "Intermediate.rda",
hessian = FALSE,
silent = FALSE,
cofactors = NULL,
add.cofactors = NULL,
zero = 1e-09,
lower = 0,
upper = Inf,
stop.fit = FALSE,
method_Snbinom = "saddlepoint",
control = list(trace = 1, REPORT = 1, maxit = 1000),
method = c("Nelder-Mead", "L-BFGS-B")
)
Return a list of with data and result
A dataset generated by add_format
Set of parameters to be fitted
Set of fixed parameters
The change of parameters before to estimate daily counts.
TRUE or FALSE to save the intermediates
Name of the file where to save the intermediates as a list
If FALSE does not estimate se of parameters
If TRUE does not show any message
data.frame with a column Date and a column for each cofactor
Names of the column of parameter cofactors to use as a cofactor
If the theoretical nest number is under this value, this value will be used
Lower bound for each parameter
Upper bound for each parameter
If TRUE, will stop search for parameters even if not ML
Can be Furman, exact, or saddlepoint.
List for control parameters for optim
Method used by optim. Several can be setup.
Marc Girondot marc.girondot@gmail.com
fit_phenology fits parameters to timeseries.
Other Phenology model:
AutoFitPhenology()
,
BE_to_LBLE()
,
Gratiot
,
LBLE_to_BE()
,
LBLE_to_L()
,
L_to_LBLE()
,
MarineTurtles_2002
,
MinBMinE_to_Min()
,
adapt_parameters()
,
add_SE()
,
add_phenology()
,
extract_result()
,
likelihood_phenology()
,
logLik.phenology()
,
map_Gratiot
,
map_phenology()
,
par_init()
,
phenology()
,
phenology2fitRMU()
,
phenology_MHmcmc()
,
phenology_MHmcmc_p()
,
plot.phenology()
,
plot.phenologymap()
,
plot_delta()
,
plot_phi()
,
print.phenology()
,
print.phenologymap()
,
print.phenologyout()
,
remove_site()
,
result_Gratiot
,
result_Gratiot1
,
result_Gratiot2
,
result_Gratiot_Flat
,
result_Gratiot_mcmc
,
summary.phenology()
,
summary.phenologymap()
,
summary.phenologyout()