if (FALSE) {
# Read a file with data
data(Gratiot)
# Generate a formated list nammed data_Gratiot
data_Gratiot <- add_phenology(Gratiot, name="Complete",
reference=as.Date("2001-01-01"), format="%d/%m/%Y")
# Generate initial points for the optimisation
parg <- par_init(data_Gratiot, fixed.parameters=NULL)
# Estimate likelihood with this initial set of parameters
likelihood_phenology(data=data_Gratiot, fitted.parameters=parg, fixed.parameters=NULL)
# Or directly from a result object
likelihood_phenology(result=result_Gratiot)
# With new parametrization based on Omeyer et al. (2022)
# Omeyer, L. C. M., McKinley, T. J., Bréheret, N., Bal, G., Balchin, G. P., Bitsindou, A.,
# Chauvet, E., Collins, T., Curran, B. K., Formia, A., Girard, A., Girondot, M., Godley, B. J.,
# Mavoungou, J.-G., Poli, L., Tilley, D., VanLeeuwe, H. & Metcalfe, K. 2022. Missing data in
# sea turtle population monitoring: a Bayesian statistical framework accounting for incomplete
# sampling Front. Mar. Sci. (IF 3.661), 9, 817014.
parg <- c(tp=unname(parg["Peak"]), tf=unname(parg["Flat"]),
s1=unname(parg["LengthB"])/4.8, s2=unname(parg["LengthE"])/4.8,
alpha=unname(parg["Max_Complete"]), Theta=unname(parg["Theta"]))
likelihood_phenology(data=data_Gratiot, fitted.parameters=parg, fixed.parameters=NULL)
}
Run the code above in your browser using DataLab