library("phenology")
# Read a file with data
data(Gratiot)
# Generate a formatted list nammed data_Gratiot
data_Gratiot <- add_phenology(Gratiot, name = "Complete",
reference = as.Date("2001-01-01"), format = "%d/%m/%Y")
# Generate initial points for the optimisation
parg <- par_init(data_Gratiot, fixed.parameters = NULL)
# Run the optimisation
if (FALSE) {
result_Gratiot <- fit_phenology(data = data_Gratiot,
fitted.parameters = parg, fixed.parameters = NULL)
}
data(result_Gratiot)
# Extract the fitted parameters
parg1 <- extract_result(result_Gratiot)
# Add constant Alpha and Tau values
# [day d amplitude=(Alpha+Nd*Beta)^Tau with Nd being the number of counts for day d]
pfixed <- c(parg1, Alpha=0, Tau=1)
pfixed <- pfixed[-which(names(pfixed)=="Theta")]
# The only fitted parameter will be Beta
parg2 <- c(Beta=0.5, parg1["Theta"])
# Generate a likelihood map
# [default Phi=seq(from=0.1, to=20, length.out=100) but it is very long]
# Take care, it takes 20 hours ! The data map_Gratiot has the result
if (FALSE) {
library(phenology)
map_Gratiot <- map_phenology(data = data_Gratiot,
Phi = seq(from=0.1, to=30, length.out=100),
fitted.parameters = parg2,
fixed.parameters = pfixed)
}
data(map_Gratiot)
# Plot the map
plot(map_Gratiot, col = heat.colors(128))
# Plot the min(-Ln L) for Phi varying at any delta value
plot_phi(map = map_Gratiot)
# Plot the min(-Ln L) for Delta varying with Phi equal to the value for maximum likelihood
plot_delta(map = map_Gratiot)
# Plot the min(-Ln L) for Delta varying with Phi the nearest to 15
plot_delta(map = map_Gratiot, Phi = 15)
Run the code above in your browser using DataLab