if (FALSE) {
library(phenology)
# Read a file with data
data(Gratiot)
# Generate a formatted list nammed data_Gratiot
data_Gratiot <- add_phenology(Gratiot, name = "Complete",
reference = as.Date("2001-01-01"), format="%d/%m/%Y")
# Generate initial points for the optimisation
parg <- par_init(data_Gratiot, fixed.parameters=NULL)
parg <- c('Max_Complete' = 33.076044848500167, 25,
'MinB_Complete' = 0.21758630798131923,
'MinE_Complete' = 0.42493953463205936,
'LengthB' = 96.158007568020523,
'Peak' = 174.62435300274245,
'LengthE' = 62.084876419654634,
'Flat' = 0,
'Theta' = 3.5864650991821954)
# Run the optimisation
result_Gratiot <- fit_phenology(data=data_Gratiot,
fitted.parameters=parg,
fixed.parameters=NULL)
data(result_Gratiot)
# Plot the phenology and get some stats
output <- plot(result_Gratiot)
# Plot only part of the nesting season
ptoutput <- plot(result_Gratiot, xlim=c(as.Date("2001-03-01"),as.Date("2001-08-31")))
# Use month names in English
Sys.setlocale(category = "LC_TIME", locale = "en_GB.UTF-8")
output <- plot(result_Gratiot)
# set back the month name in local R language
Sys.setlocale(category = "LC_TIME", locale = "")
# plot based on quantiles of mcmc object
plot(result_Gratiot, resultmcmc=result_Gratiot_mcmc,
plot.objects=c("observations", "MCMC.quantiles"))
plot(result_Gratiot, resultmcmc=result_Gratiot_mcmc,
plot.objects=c("observations", "ML.SD", "ML.quantiles"))
plot(result_Gratiot, resultmcmc=result_Gratiot_mcmc,
plot.objects=c("observations", "ML.SD", "MCMC.quantiles"))
plot(result_Gratiot, resultmcmc=result_Gratiot_mcmc,
plot.objects=c("observations", "ML.quantiles", "MCMC.quantiles"))
}
Run the code above in your browser using DataLab