if (FALSE) {
library("phenology")
# Read a file with data
data(Gratiot)
# Generate a formatted list nammed data_Gratiot
data_Gratiot<-add_phenology(Gratiot, name="Complete",
reference=as.Date("2001-01-01"), format="%d/%m/%Y")
# Generate initial points for the optimisation
parg<-par_init(data_Gratiot, fixed.parameters=NULL)
# Run the optimisation
result_Gratiot<-fit_phenology(data=data_Gratiot,
fitted.parameters=parg, fixed.parameters=NULL)
data(result_Gratiot)
# Extract the fitted parameters
parg1<-extract_result(result_Gratiot)
# Add constant Alpha and Tau values
# [day d amplitude=(Alpha+Nd*Beta)^Tau with Nd being the number of counts for day d]
pfixed<-c(parg1, Alpha=0, Tau=1)
pfixed<-pfixed[-which(names(pfixed)=="Theta")]
# The only fitted parameter will be Beta
parg2<-c(Beta=0.5, parg1["Theta"])
# Generate a likelihood map
# [default Phi=seq(from=0.1, to=20, length.out=100) but it is very long]
# Take care, it takes 20 hours ! The data map_Gratiot has the result
map_Gratiot<-map_phenology(data=data_Gratiot,
Phi=seq(from=0.1, to=20, length.out=100),
fitted.parameters=parg2, fixed.parameters=pfixed)
data(map_Gratiot)
# Plot the map
plot(map_Gratiot, col=heat.colors(128))
}
Run the code above in your browser using DataLab