n <- 50 # total sample size
nclust <- 5 # number of clusters
clusters <- rep(1:nclust,each=n/nclust)
beta0 <- c(1,2)
set.seed(13)
#generate phmm data set
Z <- cbind(Z1=sample(0:1,n,replace=TRUE),
Z2=sample(0:1,n,replace=TRUE),
Z3=sample(0:1,n,replace=TRUE))
b <- cbind(rep(rnorm(nclust),each=n/nclust),rep(rnorm(nclust),each=n/nclust))
Wb <- matrix(0,n,2)
for( j in 1:2) Wb[,j] <- Z[,j]*b[,j]
Wb <- apply(Wb,1,sum)
T <- -log(runif(n,0,1))*exp(-Z[,c('Z1','Z2')]%*%beta0-Wb)
C <- runif(n,0,1)
time <- ifelse(T<C,T,C)
event <- ifelse(T<=C,1,0)
mean(event)
phmmd <- data.frame(Z)
phmmd$cluster <- clusters
phmmd$time <- time
phmmd$event <- event
fit.phmm <- phmm(Surv(time, event) ~ Z1 + Z2 + (-1 + Z1 + Z2 | cluster),
phmmd, Gbs = 100, Gbsvar = 1000, VARSTART = 1,
NINIT = 10, MAXSTEP = 100, CONVERG=90)
# Same data can be fit with lmer,
# though the correlation structures are different.
poisphmmd <- pseudoPoisPHMM(fit.phmm)
library(lme4)
fit.lmer <- lmer(m~-1+as.factor(time)+z1+z2+
(-1+w1+w2|cluster)+offset(log(N)),
as.data.frame(as(poisphmmd, "matrix")), family=poisson)
fixef(fit.lmer)[c("z1","z2")]
fit.phmm$coef
VarCorr(fit.lmer)$cluster
fit.phmm$Sigma
logLik(fit.lmer)
fit.phmm$loglik
traceHat(fit.phmm)
summary(fit.lmer)
Run the code above in your browser using DataLab