This function fits a model to the data from each participant individually using repeated calls to glm(). Significance testing is then carried out on the coefficients fit for each participant using the methods established in Gumpertz & Pantula (1989) and Lorch & Myers (1990).
In perceptual experiments there is frequently a high number of data points collected from each participant, and the data collected from each participant is balanced by design. In these situations rcr performs comparably to mixed-effects models. In the event that only a small number of observations are made from each listener, or the data is not balanced, rcr may not be appropriate.
A call to summary() on an rcr object performs a one-sample t-test on each coefficient to test whether it is significantly different from zero.
A call to anova() on an rcr object performs a one-sample t-test in the case of single coefficients, and a one-sample Hotelling T2 test in the event that multiple coefficients are associated with a single factor, to test that they are not all equal to zero.
A call to plot() on an rcr object displays the density corresponding to the distribution of all fitted coefficients. These are compared to a normal distribution with the same mean and standard deviation.