# NOT RUN {
water_vp_sat(20) # C -> Pa
water_vp_sat(temperature = c(0, 10, 20, 30, 40)) # C -> Pa
water_vp_sat(temperature = -10) # over water!!
water_vp_sat(temperature = -10, over.ice = TRUE)
water_vp_sat(temperature = 20) / 100 # C -> mbar
water_vp_sat(temperature = 20, method = "magnus") # C -> Pa
water_vp_sat(temperature = 20, method = "tetens") # C -> Pa
water_vp_sat(temperature = 20, method = "wexler") # C -> Pa
water_vp_sat(temperature = 20, method = "goff.gratch") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "magnus") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "tetens") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "wexler") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "goff.gratch") # C -> Pa
water_dp(water.vp = 1000) # Pa -> C
water_dp(water.vp = 1000, method = "magnus") # Pa -> C
water_dp(water.vp = 1000, method = "wexler") # Pa -> C
water_dp(water.vp = 500, over.ice = TRUE) # Pa -> C
water_dp(water.vp = 500, method = "wexler", over.ice = TRUE) # Pa -> C
water_fp(water.vp = 300) # Pa -> C
water_dp(water.vp = 300, over.ice = TRUE) # Pa -> C
water_vp2RH(water.vp = 1500, temperature = 20) # Pa, C -> RH %
water_vp2RH(water.vp = 1500, temperature = c(20, 30)) # Pa, C -> RH %
water_vp2RH(water.vp = c(600, 1500), temperature = 20) # Pa, C -> RH %
water_vp2mvc(water.vp = 1000, temperature = 20) # Pa -> g m-3
water_mvc2vp(water.mvc = 30, temperature = 40) # g m-3 -> Pa
water_dp(water.vp = water_mvc2vp(water.mvc = 10, temperature = 30)) # g m-3 -> C
# }
Run the code above in your browser using DataLab