Learn R Programming

photobiology (version 0.11.3)

diffraction_single_slit: Diffraction

Description

Diffraction of optical radiation passing through a single slit can be computed with function diffraction_single_slit(), which implements Fraunhofer's equation. Diffraction plus interference for a pair of slits can be computed with diffraction_double_slit().

Usage

diffraction_single_slit(w.length, slit.width, angle)

diffraction_double_slit(w.length, slit.width, slit.distance, angle)

Value

A numeric vector of the same length as angle, containing relative intensities.

Arguments

w.length

numeric Wavelength (nm).

slit.width

numeric Width of the slit (m).

angle

numeric vector Angle (radians).

slit.distance

numeric Distance between the centres of the two slits (m).

Examples

Run this code
diffraction_single_slit(w.length = 550,
                             slit.width = 1e-5,
                             angle = 0)

# use odd number for length.out so that 0 is in the sequence
angles <- pi * seq(from = -1/2, to = 1/2, length.out = 501)

plot(angles,
     diffraction_single_slit(w.length = 550, # 550 nm
                             slit.width = 6e-6, # 6 um
                             angle = angles),
     type = "l",
     ylab = "Relative irradiance (/1)",
     xlab = "Angle (radian)")

plot(angles,
     diffraction_double_slit(w.length = 550, # 550 nm
                             slit.width = 6e-6, # 6 um
                             slit.distance = 18e-6, # 18 um
                             angle = angles),
     type = "l",
     ylab = "Relative irradiance (/1)",
     xlab = "Angle (radian)")

Run the code above in your browser using DataLab