This function fits a flexible Brownian multi-rate model using penalized likelihood.
The model that is being fit is one in which the rate of Brownian motion evolution itself evolves from edge to edge in the tree under a process of geometric Brownian evolution (i.e., Brownian motion evolution on a log scale).
The penalty term, lambda
, determines the cost of variation in the rate of evolution from branch to branch. If lambda is high, then the rate of evolution will vary relatively little between edges (and in the limiting case converge to the single-rate MLE estimate of the rate). By contrast, if the value of lambda
is set to be low, then the rate of evolution can vary from edge to edge with relatively little penalty.
Decreasing the penalty term, however, is not without cost. As lambda
is decreased towards zero, estimated rates will tend to become less and less accurate.