Learn R Programming

pickgene (version 1.44.0)

pickgene-internal: Internal pickgene functions.

Description

These are generally not to be called by the user.

Usage

adjustlevel(ntest, alpha) chen.poly(cv, err) chipnorm(xx, chip) dencont(x, y, align, crit, xlim, ylim, dolog, byranks, dif, ave, numlines, levels.z) dencum(x, y, align, crit, xlim, ylim, dolog, byranks, standardize, dif, ave, splineit, numlines, show, levels.z) denlines(x, y, align, crit, xlim, ylim, dolog, dif, ave, numlines, offset) do.oddsplot(data, main, theta, col, redo, conditions, identifier, ...) fitgg(xx, yy, start) gammaden(x, a, b) holms(x, alpha, cut) lod.ggb(x, y, theta) lod.plot(data, x, y, theta, filename, probe, xlab, ylab, ps, col, lowlod, ...) lodprobes(xx, yy, theta, lod, probes, col, lowlod, offset) loglik(theta, xx, yy) makecont(x, y, size, cex, levels) multipickgene(...) nlminb(start, objective, lower, xx, yy, zz, use.optim) nloglik(theta, xx, yy) normal.richmond(foo, channel) npdiag(xx, yy, aa, a0, nu, pp) nploglik(theta, xx, yy, zz) orangene(n, center, spread, contamination, alpha, noise, omega) pickedchisq(pick, show, title, plotit, alpha) pickedhist(pick, show, title, p1, plotit, rotate, mfrow, bw) pickedpair(x, columns, description, probe, renorm, pick, main, ...) pickedscore(pick, description, show, alpha, xlab, ylab, main, mfrow) pickgene2(...) pickgene.poly(x, condi, geneID, overalllevel, npickgene, d, ylabs, contrastnames, ...) pickgene.two(y, intensity, geneid, singlelevel, npickgene, meanrank, xlab, ylab, main, plotit, col, negative, ...) pmarg(xx, yy, theta, nsupp) predrecur(xx, theta, gridlim) rangene(n, center, spread, contamination, alpha, noise, omega) rankgene(xx, yy, fits) robustbox(y, x, nslice, xlab, ylab, shrink, crit, overalllevel, cex, lwd, plotit) s.check0(xx, yy, theta1, theta2, chip) s.check1(xx, yy, theta, chip) s.check2(foo, xa, ya, thetaa, xb, yb, thetab, spots) shrinkplot(xx, yy, fits, chip) sixden(x, y, align, crit, xlim, dolog, dif, ave) s.marg(xx, yy, aa, a0, nuA, nu0, p) toprankgene(yy, n) twoarray.norm(foo, ..., conditions, reduce, identifier) twoarray.plot(mydata, main, theta, conditions, identifier) twowayanovapickgene(x, fac1level, fac2level, ...)

Arguments