## See the demos via demo(package="plgp"); it is important to
## run them with the ask=FALSE argument so that the
## automatically generated plots may refresh automatically
## (without requiring the user to press RETURN)
if (FALSE) {
## Illustrates regression GPs on a simple 1-d sinusoidal
## data generating mechanism
demo("plgp_sin1d", ask=FALSE)
## Illustrates classification GPs on a simple 2-d exponential
## data generating mechanism
demo("plcgp_exp", ask=FALSE)
## Illustrates classification GPs on Ripley's Cushings data
demo("plcgp_cush", ask=FALSE)
## Illustrates active learning via the expected improvement
## statistic on a simple 1-d data generating mechanism
demo("plgp_exp_ei", ask=FALSE)
## Illustrates active learning via entropy with classification
## GPs on a simple 2-d exponential data generating mechanism
demo("plcgp_exp_entropy", ask=FALSE)
## Illustrates active learning via the integrated expected
## conditional improvement statistic for optimization
## under known constraints on a simple 1-d data generating
## mechanism
demo("plgp_1d_ieci", ask=FALSE)
## Illustrates active learning via the integrated expected
## conditional improvement statistic for optimization under
## unknown constraints on a simple 1-d data generating
## mechanism
demo("plconstgp_1d_ieci", ask=FALSE)
## Illustrates active learning via the integrated expected
## conditional improvement statistic for optimization under
## unknokn constraints on a simple 2-d data generating
## mechanism
demo("plconstgp_2d_ieci", ask=FALSE)
}
Run the code above in your browser using DataLab