library(sandwich)
library(lmtest)
library(car)
data("Produc", package="plm")
zz <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp, data=Produc, model="random")
## standard coefficient significance test
coeftest(zz)
## robust significance test
coeftest(zz, vcov=vcovHC)
## idem with parameters, pass vcov as a function argument
coeftest(zz, vcov=function(x) vcovHC(x, method="arellano", type="HC1"))
## idem with parameters, pass vcov as a matrix argument
coeftest(zz, vcov=vcovHC(zz, method="arellano", type="HC1"))
## joint restriction test
waldtest(zz, update(zz, .~.-log(emp)-unemp), vcov=vcovHC)
## test of hyp.: 2*log(pc)=log(emp)
linear.hypothesis(zz, "2*log(pc)=log(emp)", vcov=vcovHC)
## Robust inference for GMM models
data("EmplUK", package="plm")
ar <- pgmm(dynformula(log(emp)~log(wage)+log(capital)+log(output),list(2,1,2,2)),
data=EmplUK, effect="twoways", model="twosteps",
gmm.inst=~log(emp), lag.gmm=list(c(2,99)))
rv <- vcovHC(ar)
mtest(ar, order=2, vcov=rv)
Run the code above in your browser using DataLab