Last chance! 50% off unlimited learning
Sale ends in
persp3D
extends R's persp function.
ribbon3D
is similar to persp3D
but has ribbon-like colored surfaces.
hist3D
generates 3-D histograms.
persp3D (x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)), z, ...,
colvar = z, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL, resfac = 1,
image = FALSE, contour = FALSE, panel.first = NULL,
clim = NULL, clab = NULL, bty = "b",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
inttype = 1, curtain = FALSE, add = FALSE, plot = TRUE)ribbon3D (x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)), z, ...,
colvar = z, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL, resfac = 1,
image = FALSE, contour = FALSE, panel.first = NULL,
clim = NULL, clab = NULL, bty = "b",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
space = 0.4, along = "x",
curtain = FALSE, add = FALSE, plot = TRUE)
hist3D (x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)), z, ...,
colvar = z, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL,
image = FALSE, contour = FALSE,
panel.first = NULL, clim = NULL, clab = NULL, bty = "b",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
space = 0, opaque.top = FALSE, zmin = NULL,
add = FALSE, plot = TRUE)
Returns, as invisible, the viewing transformation matrix.
See trans3D.
Matrix (2-D) containing the values to be plotted as a persp plot.
Vectors or matrices with x and y values.
If a vector, x
should be of length equal to nrow(z)
and
y
should be equal to ncol(z)
. If a matrix (only for persp3D
),
x
and y
should have the same dimension as z
.
The variable used for coloring. If present, it should have the
same dimension as z
. Values of NULL
, NA
, or FALSE
will toggle off coloration according to colvar
. This gives good results
only if border
is given a color, or when shade
is > 0 or
lighting
is TRUE
).
Color palette to be used for the colvar
variable.
If col
is NULL
and colvar
is specified,
then a red-yellow-blue colorscheme (jet.col) will be used.
If col
is NULL
and colvar
is not specified, then
col
will be grey
.
Finally, to mimic the behavior of persp, set colvar
= NULL
and make col
a matrix of colors with (nrow(z)-1) rows and
(ncol(z)-1) columns.
Color to be used for NA
values of colvar
; default is ``white''.
a set of finite numeric breakpoints for the colors; must have one more breakpoint than color and be in increasing order. Unsorted vectors will be sorted, with a warning.
A logical, NULL
(default), or a list
with parameters
for the color key (legend). List parameters should be one of
side, plot, length, width, dist, shift, addlines, col.clab, cex.clab,
side.clab, line.clab, adj.clab, font.clab
and the axis parameters at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck, tcl, las
.
The defaults for the parameters are side = 4, plot = TRUE, length = 1, width = 1,
dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab = par("cex.lab"),
side.clab = NULL, line.clab = NULL, adj.clab = NULL, font.clab = NULL
)
See colkey.
The default is to draw the color key on side = 4, i.e. in the right margin.
If colkey
= NULL
then a color key will be added only if col
is a vector.
Setting colkey = list(plot = FALSE)
will create room for the color key
without drawing it.
if colkey = FALSE
, no color key legend will be added.
Only if colkey = TRUE
, the label to be written on top of the
color key. The label will be written at the same level as the main title.
to lower it, clab
can be made a vector, with the first values empty
strings.
Only if colvar
is specified, the range of the color variable, used
for the color key. Values of colvar
that extend the range will be put to NA
.
Resolution factor, one value or a vector of two numbers, for
the x and y- values respectively. A value > 1 will increase the
resolution. For instance, if resfac
equals 3
then for each
adjacent pair of x- and y-values, z will be interpolated to two intermediary points.
This uses simple linear interpolation. If resfac
is one number then
the resolution will be increased similarly in x and y-direction.
The angles defining the viewing direction.
theta
gives the azimuthal direction and phi
the colatitude.
see persp.
The color of the lines drawn around the surface facets.
The default, NA
, will disable the drawing of borders.
If TRUE
, then col
denotes the color of the surface facets.
If FALSE
, then the surface facets are colored ``white'' and the border
(if NA
) will be colored as specified by col
.
If NA
then the facets will be transparent.
It is usually faster to draw with facets = FALSE
.
If TRUE
, an image will be plotted at the bottom.
Also allowed is to pass a list
with arguments for the image2D function.
An optional parameter to this list
is the side
where the image
should be plotted. Allowed values for side
are a z-value,
or side = "zmin", "zmax"
, for positioning at
bottom or top respectively. The default is to put the image at the bottom.
If TRUE
, a contour will be plotted at the bottom.
Also allowed is to pass a list
with arguments for the contour function.
An optional parameter to this list
is the side
where the image
should be plotted. Allowed values for side
are a z-value,
or side = "zmin", "zmax"
, for positioning at
bottom or top respectively. The default is to put the image at the bottom.
A function
to be evaluated after the plot axes are
set up (and if applicable, images or contours drawn) but before any plotting takes place.
This can be useful for drawing background grids or scatterplot smooths.
The function should have as argument the transformation matrix (pmat), e.g. it should
be defined as function(pmat)
. See example.
The direction along which the ribbons are drawn, one of "x", "y" or "xy", for ribbons parallel to the x- y- or both axes. In the latter case, the figure looks like a net.
If TRUE
, the ribbon or persp edges will be draped till the bottom.
The amount of space (as a fraction of the average bar/ribbon width)
left between bars/ribbons. A value inbetween [0, 0.9] (hist3D
)
or [0.1, 0.9] (ribbon3D
). Either one number, or a two-valued vector,
for the x- and y- direction.
The type of the box, the default only drawing background panels.
Only effective if the persp
argument (box
) equals TRUE
(this is the default). See perspbox.
If not FALSE
the facets will be illuminated, and colors may
appear more bright. To switch on lighting, the argument lighting
should be either set to TRUE
(using default settings) or it can be a
list with specifications of one of the following:
ambient, diffuse, specular, exponent, sr
and alpha
.
Will overrule shade
not equal to NA
.
See examples in jet.col.
the degree of shading of the surface facets. Values of shade close to one yield shading similar to a point light source model and values close to zero produce no shading. Values in the range 0.5 to 0.75 provide an approximation to daylight illumination. See persp.
if finite values are specified for ltheta
and
lphi
, the surface is shaded as though it was being illuminated from
the direction specified by azimuth ltheta
and colatitude lphi
.
See persp.
The interpolation type to create the polygons, either
averaging the colvar
(inttype = 1, 3
or extending
the x, y, z
values (inttype = 2
) - see details.
Only used when alpha
is set (transparency):
if TRUE
then the top of the bars is opaque.
The base of the histogram ; if NULL
then it extends to
the minimum of the z-axis. Note: this was added from version 1.1.1 on;
before that it was assumed that the base of the histogram was at z=0.
Logical. If TRUE
, then the surfaces will be added to the current plot.
If FALSE
a new plot is started.
Logical. If TRUE
(default), a plot is created,
otherwise the viewing transformation matrix is returned (as invisible).
additional arguments passed to the plotting methods.
The following persp arguments can be specified:
xlim, ylim, zlim, xlab, ylab, zlab, main, sub, r, d,
scale, expand, box, axes, nticks, ticktype
.
The arguments xlim
, ylim
, zlim
only affect the axes.
All objects will be plotted, including those that fall out of these ranges.
To select objects only within the axis limits, use plotdev.
In addition, the perspbox arguments
col.axis, col.panel, lwd.panel, col.grid, lwd.grid
can
also be given a value.
alpha
can be given a value inbetween 0 and 1 to make colors transparent.
For all functions, the arguments lty, lwd
can be specified; this is only
effective is border
is not NA
.
The arguments after ... must be matched exactly.
Karline Soetaert <karline.soetaert@nioz.nl>
persp3D
is an extension to the default persp plot that has
the possibility to add a color key, to increase the
resolution in order to make smoother images,
to toggle on or off facet coloration, ...
The perspective plots are drawn as filled polygons. Each polygon is defined by
4 corners and a color, defined in its centre.
When facets are colored, there are three interpolation schemes as set by inttype
.
The default (inttype = 1
) is similar to R's function persp
,
and assumes that the z
-values define the points on the corners of
each polygon. In case a colvar
is defined, its values are to be recalculated
to the middle of each polygon, i.e. the color values need to be of size
(nx-1)(ny-1), and averages are taken from the original data
(nx and ny are number of x and y points).
This will make the colors (and/or shading) smoother.
When inttype = 1
then NA
values in colvar
will be used as
such during the averaging. This will tend to make the NA
region larger.
An alternative is to set inttype = 3
, which is similar to inttype = 1
except for the NA
values, which will be removed during the averaging.
This will tend to make the NA
region smaller.
By setting inttype = 2
, a second interpolation scheme
is selected. This is mainly of use in case a colvar
is defined, and it
is not desirable that the colors are smoothened.
In this scheme, it is assumed that the z
values and colvar
values are both defined in the centre of the polygons.
To color the facets the x, y, z grid is extended (to a (nx+1)(ny+1) grid),
while colvar
is used as such.
This will make the z-values (topography) smoother than the original data.
This type of interpolation may be preferable for color variables that have NA
values,
as taking averages tends to increase the NA
region.
The persp function on which this implementation is based:
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.
persp for the function on which this is based.
Hypsometry for an example where axis-panels are colored.
scatter3D for a combination of a persp surface and data points.
text3D for annotating axes (hist3D).
plotdev for zooming, rescaling, rotating a plot.
# save plotting parameters
pm <- par("mfrow")
## =======================================================================
## Ribbon, persp, color keys, facets
## =======================================================================
par(mfrow = c(2, 2))
# simple, no scaling, use breaks to set colors
persp3D(z = volcano, main = "volcano", clab = c("height", "m"),
breaks = seq(80,200, by = 10))
# keep ratios between x- and y (scale = FALSE)
# change ratio between x- and z (expand)
persp3D(z = volcano, x = 1: nrow(volcano), y = 1:ncol(volcano),
expand = 0.3, main = "volcano", facets = FALSE, scale = FALSE,
clab = "height, m", colkey = list(side = 1, length = 0.5))
# ribbon, in x--direction
V <- volcano[, seq(1, ncol(volcano), by = 3)] # lower resolution
ribbon3D(z = V, colkey = list(width = 0.5, length = 0.5,
cex.axis = 0.8, side = 2), clab = "m")
# ribbon, in y-direction
Vy <- volcano[seq(1, nrow(volcano), by = 3), ]
ribbon3D(z = Vy, expand = 0.3, space = 0.3, along = "y",
colkey = list(width = 0.5, length = 0.5, cex.axis = 0.8))
## =======================================================================
## Several ways to visualise 3-D data
## =======================================================================
x <- seq(-pi, pi, by = 0.2)
y <- seq(-pi, pi, by = 0.3)
grid <- mesh(x, y)
z <- with(grid, cos(x) * sin(y))
par(mfrow = c(2,2))
persp3D(z = z, x = x, y = y)
persp3D(z = z, x = x, y = y, facets = FALSE, curtain = TRUE)
# ribbons in two directions and larger spaces
ribbon3D(z = z, x = x, y = y, along = "xy", space = 0.3)
hist3D(z = z, x = x, y = y, border = "black")
## =======================================================================
## Contours and images added
## =======================================================================
par(mfrow = c(2, 2))
x <- seq(1, nrow(volcano), by = 3)
y <- seq(1, ncol(volcano), by = 3)
Volcano <- volcano [x, y]
ribbon3D(z = Volcano, contour = TRUE, zlim= c(-100, 200),
image = TRUE)
persp3D(z = Volcano, contour = TRUE, zlim= c(-200, 200), image = FALSE)
persp3D(z = Volcano, x = x, y = y, scale = FALSE,
contour = list(nlevels = 20, col = "red"),
zlim = c(-200, 200), expand = 0.2,
image = list(col = grey (seq(0, 1, length.out = 100))))
persp3D(z = Volcano, contour = list(side = c("zmin", "z", "350")),
zlim = c(-100, 400), phi = 20, image = list(side = 350))
## =======================================================================
## Use of inttype
## =======================================================================
par(mfrow = c(2, 2))
persp3D(z = Volcano, shade = 0.5, colkey = FALSE)
persp3D(z = Volcano, inttype = 2, shade = 0.5, colkey = FALSE)
x <- y <- seq(0, 2*pi, length.out = 10)
z <- with (mesh(x, y), cos(x) *sin(y)) + runif(100)
cv <- matrix(nrow = 10, ncol = 10, 0.5*runif(100))
persp3D(x, y, z, colvar = cv) # takes averages of z
persp3D(x, y, z, colvar = cv, inttype = 2) # takes averages of colvar
## =======================================================================
## Use of inttype with NAs
## =======================================================================
par(mfrow = c(2, 2))
VV <- V2 <- volcano[10:15, 10:15]
V2[3:4, 3:4] <- NA
V2[4, 5] <- NA
image2D(V2, border = "black") # shows true NA region
# averages of V2, including NAs, NA region larger
persp3D(z = VV, colvar = V2, inttype = 1, theta = 0,
phi = 20, border = "black", main = "inttype = 1")
# extension of VV; NAs unaffected
persp3D(z = VV, colvar = V2, inttype = 2, theta = 0,
phi = 20, border = "black", main = "inttype = 2")
# average of V2, ignoring NA; NA region smaller
persp3D(z = VV, colvar = V2, inttype = 3, theta = 0,
phi = 20, border = "black", main = "inttype = 3")
## =======================================================================
## Use of panel.first
## =======================================================================
par(mfrow = c(1, 1))
# A function that is called after the axes were drawn
panelfirst <- function(trans) {
zticks <- seq(100, 180, by = 20)
len <- length(zticks)
XY0 <- trans3D(x = rep(1, len), y = rep(1, len), z = zticks,
pmat = trans)
XY1 <- trans3D(x = rep(1, len), y = rep(61, len), z = zticks,
pmat = trans)
segments(XY0$x, XY0$y, XY1$x, XY1$y, lty = 2)
rm <- rowMeans(volcano)
XY <- trans3D(x = 1:87, y = rep(ncol(volcano), 87),
z = rm, pmat = trans)
lines(XY, col = "blue", lwd = 2)
}
persp3D(z = volcano, x = 1:87, y = 1: 61, scale = FALSE, theta = 10,
expand = 0.2, panel.first = panelfirst, colkey = FALSE)
## =======================================================================
## with / without colvar / facets
## =======================================================================
par(mfrow = c(2, 2))
persp3D(z = volcano, shade = 0.3, col = gg.col(100))
# shiny colors - set lphi for more brightness
persp3D(z = volcano, lighting = TRUE, lphi = 90)
persp3D(z = volcano, col = "lightblue", colvar = NULL,
shade = 0.3, bty = "b2")
# this also works:
# persp3D(z = volcano, col = "grey", shade = 0.3)
# tilted x- and y-coordinates of 'volcano'
volcx <- matrix(nrow = 87, ncol = 61, data = rep(1:87, times=61))
volcx <- volcx + matrix(nrow = 87, ncol = 61, byrow = TRUE,
data = rep(seq(0., 15, length.out=61), times=87))
volcy <- matrix(ncol = 87, nrow = 61, data = rep(1:61, times=87))
volcy <- t(volcy + matrix(ncol = 87, nrow = 61, byrow = TRUE,
data = rep(seq(0., 15, length.out=87), times=61)))
persp3D(volcano, x = volcx, y = volcy, phi = 80)
## =======================================================================
## Several persps on one plot
## =======================================================================
par(mfrow = c(1, 1))
clim <- range(volcano)
persp3D(z = volcano, zlim = c(100, 600), clim = clim,
box = FALSE, plot = FALSE)
persp3D(z = volcano + 200, clim = clim, colvar = volcano,
add = TRUE, colkey = FALSE, plot = FALSE)
persp3D(z = volcano + 400, clim = clim, colvar = volcano,
add = TRUE, colkey = FALSE) # plot = TRUE by default
## =======================================================================
## hist3D
## =======================================================================
par(mfrow = c(2, 2))
VV <- volcano[seq(1, 87, 15), seq(1, 61, 15)]
hist3D(z = VV, scale = FALSE, expand = 0.01, border = "black")
# transparent colors
hist3D(z = VV, scale = FALSE, expand = 0.01,
alpha = 0.5, opaque.top = TRUE, border = "black")
hist3D(z = VV, scale = FALSE, expand = 0.01, facets = FALSE, lwd = 2)
hist3D(z = VV, scale = FALSE, expand = 0.01, facets = NA)
## =======================================================================
## hist3D and ribbon3D with greyish background, rotated, rescaled,...
## =======================================================================
par(mfrow = c(2, 2))
hist3D(z = VV, scale = FALSE, expand = 0.01, bty = "g", phi = 20,
col = "#0072B2", border = "black", shade = 0.2, ltheta = 90,
space = 0.3, ticktype = "detailed", d = 2)
# extending the ranges
plotdev(xlim = c(-0.2, 1.2), ylim = c(-0.2, 1.2), theta = 45)
ribbon3D(z = VV, scale = FALSE, expand = 0.01, bty = "g", phi = 20,
col = "lightblue", border = "black", shade = 0.2, ltheta = 90,
space = 0.3, ticktype = "detailed", d = 2, curtain = TRUE)
ribbon3D(z = VV, scale = FALSE, expand = 0.01, bty = "g", phi = 20, zlim = c(95,183),
col = "lightblue", lighting = TRUE, ltheta = 50, along = "y",
space = 0.7, ticktype = "detailed", d = 2, curtain = TRUE)
## =======================================================================
## hist3D for a 1-D data set
## =======================================================================
par(mfrow = c(2, 1))
x <- rchisq(1000, df = 4)
hs <- hist(x, breaks = 15)
hist3D(x = hs$mids, y = 1, z = matrix(ncol = 1, data = hs$density),
bty = "g", ylim = c(0., 2.0), scale = FALSE, expand = 20,
border = "black", col = "white", shade = 0.3, space = 0.1,
theta = 20, phi = 20, main = "3-D perspective")
# reset plotting parameters
par(mfrow = pm)
Run the code above in your browser using DataLab