Learn R Programming

plotKML (version 0.8-3)

RasterBrickSimulations-class: A class for spatial simulations containing equiprobable gridded features

Description

A class containing input and output maps containing multiple realizations of the same feature. Objects of this class can be directly visualized in Google Earth by using the plotKML-method.

Arguments

Slots

variable:

character; variable name

sampled:

object of class "SpatialLines"; one or more lines (cross sections) that can be used to visualize how the values change in space

realizations:

object of class "RasterBrick"; multiple realizations of the same feature

Methods

plotKML

signature(obj = "RasterBrickSimulations"): plots all objects in Google Earth

See Also

SpatialVectorsSimulations-class, RasterBrickTimeSeries-class, plotKML-method

Examples

Run this code
# NOT RUN {
# load input data:
data(barxyz)
# define the projection system:
prj = "+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999 +x_0=6500000 +y_0=0 +ellps=bessel +units=m 
+towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,0.99999445824"
library(sp)
coordinates(barxyz) <- ~x+y
proj4string(barxyz) <- CRS(prj)
data(bargrid)
coordinates(bargrid) <- ~x+y
gridded(bargrid) <- TRUE
proj4string(bargrid) <- CRS(prj)
# fit a variogram and generate simulations:
library(gstat)
Z.ovgm <- vgm(psill=1352, model="Mat", range=650, nugget=0, kappa=1.2)
sel <- runif(length(barxyz$Z))<.2  # Note: this operation can be time consuming
sims <- krige(Z~1, barxyz[sel,], bargrid, model=Z.ovgm, nmax=20, nsim=10, debug.level=-1) 
# specify the cross-section:
t1 <- Line(matrix(c(bargrid@bbox[1,1],bargrid@bbox[1,2],5073012,5073012), ncol=2))
transect <- SpatialLines(list(Lines(list(t1), ID="t")), CRS(prj))
# glue to a RasterBrickSimulations object:
bardem_sims <- new("RasterBrickSimulations", variable = "elevations", 
  sampled = transect, realizations = brick(sims))
# plot the whole project and open in Google Earth:
data(R_pal)
plotKML(bardem_sims, colour_scale = R_pal[[4]])
# }

Run the code above in your browser using DataLab