Learn R Programming

plotKML (version 0.8-3)

eberg: Ebergotzen --- soil mapping case study

Description

Eberg<U+00F6>tzen is 10 by 10 km study area in the vicinity of the city of G<U+00F6>ttingen in Central Germany. This area has been extensively surveyed over the years, mainly for the purposes of developing operational digital soil mapping techniques (Gehrt and B<U+00F6>hner, 2001), and has been used by the SAGA GIS development team to demonstrate various processing steps. eberg table contains 3670 observations (augers) of soil textures at five depths (0--10, 10--30, 30--50, 50--70, and 70--90), and field records of soil types according to the German soil classification system. eberg_grid contains gridded maps at 100 m resolution that can be used as covariates for spatial prediction of soil variables. eberg_grid25 contains grids at finer resolution (25 m). eberg_zones is a polygon map showing the distribution of parent material (Silt and sand, Sandy material, Clayey derivats, Clay and loess). eberg_contours shows contour lines derived from the 25 m DEM of the area using 10 m equidistance.

Usage

data(eberg)

Arguments

Format

The eberg data frame (irregular points) contains the following columns:

ID

universal identifier

soiltype

a vector containing factors; soil classes according to the German soil classification system: "A" (Auenboden), "B" (Braunerde), "D" (Pelosol), "G" (Gley), "Ha" (Moor), "Hw" (HMoor), "K" (Kolluvisol), "L" (Parabraunerde), "N" (Ranker), "Q" (Regosol), "R" (Rendzina), "S" (Pseudogley), "Z" (Pararendzina)

TAXGRSC

a vector containing factors; full soil class names according to the German soil classification system (see soiltype column)

X

a numeric vector; x-coordinate (m) in DHDN / Gauss-Krueger zone 3 (German coordinate system)

Y

a numeric vector; y-coordinate (m) in DHDN / Gauss-Krueger zone 3 (German coordinate system)

UHDICM_*

a numeric vector; upper horizon depth in cm per horizon

LHDICM_*

a numeric vector; lower horizon depth in cm per horizon

SNDMHT_*

a numeric vector; sand content estimated by hand per horizon (0-100 percent); see Ad-hoc-AG Boden (2005) for more details

SLTMHT_*

a numeric vector; silt content estimated by hand per horizon (0-100 percent)

CLYMHT_*

a numeric vector; clay content estimated by hand per horizon (0-100 percent)

The eberg_grid data frame (regular grid at 100 m resolution) contains the following columns:

PRMGEO6

a vector containing factors, parent material classes from the geological map (mapping units)

DEMSRT6

a numeric vector; elevation values from the SRTM DEM

TWISRT6

a numeric vector; Topographic Wetness Index derived using the SAGA algorithm

TIRAST6

a numeric vector; Thermal Infrared (TIR) reflection values from the ASTER L1 image band 14 (2010-06-05T10:26:50Z) obtained via the NASA's GloVis browser

LNCCOR6

a vector containing factors; Corine Land Cover 2006 classes

x

a numeric vector; x-coordinate (m) in DHDN / Gauss-Krueger zone 3 (German coordinate system)

y

a numeric vector; y-coordinate (m) in DHDN / Gauss-Krueger zone 3 (German coordinate system)

The eberg_grid25 data frame (regular grid at 25 m resolution) contains the following columns:

DEMTOPx

a numeric vector; elevation values from the topographic map

HBTSOLx

a vector containing factors; main soil type according to the German soil classification system (see column "soiltype" above) estimated per crop field

TWITOPx

a numeric vector; Topographic Wetness Index derived using the SAGA algorithm

NVILANx

a numeric vector; NDVI image derived using the Landsat image from the Image 2000 project

x

a numeric vector; x-coordinate (m) in DHDN / Gauss-Krueger zone 3 (German coordinate system)

y

a numeric vector; y-coordinate (m) in DHDN / Gauss-Krueger zone 3 (German coordinate system)

References

  • Ad-hoc-AG Boden, (2005) Bodenkundliche Kartieranleitung. 5th Ed, Bundesanstalt f<U+00FC>r Geowissenschaften und Rohstoffe und Niedersaechsisches Landesamt f<U+00FC>r Bodenforshung, Hannover, p. 423.

  • B<U+00F6>hner, J., McCloy, K. R. and Strobl, J. (Eds), (2006) SAGA --- Analysis and Modelling Applications. G<U+00F6>ttinger Geographische Abhandlungen, Heft 115. Verlag Erich Goltze GmbH, G<U+00F6>ttingen, 117 pp.

  • Gehrt, E., B<U+00F6>hner, J., (2001) Vom punkt zur flache --- probleme des 'upscaling' in der bodenkartierung. In: Diskussionsforum Bodenwissenschaften: Vom Bohrstock zum Bildschirm. FH, Osnabr<U+00FC>ck, pp. 17-34.

  • Skaggs, T. H., Arya, L. M., Shouse, P. J., Mohanty, B. P., (2001) Estimating Particle-Size Distribution from Limited Soil Texture Data. Soil Science Society of America Journal 65 (4): 1038-1044. 10.2136/sssaj2001.6541038x

  • https://geomorphometry.org/ebergotzen/

Examples

Run this code
# NOT RUN {
data(eberg)
data(eberg_grid)
data(eberg_zones)
data(eberg_contours)
library(sp)
coordinates(eberg) <- ~X+Y
proj4string(eberg) <- CRS("+init=epsg:31467")
gridded(eberg_grid) <- ~x+y
proj4string(eberg_grid) <- CRS("+init=epsg:31467")
# visualize the maps:
data(SAGA_pal)
l.sp <- list("sp.lines", eberg_contours, col="black")
# }
# NOT RUN {
spplot(eberg_grid["DEMSRT6"], col.regions = SAGA_pal[[1]], sp.layout=l.sp)
spplot(eberg_zones, sp.layout=list("sp.points", eberg, col="black", pch="+"))
# }

Run the code above in your browser using DataLab