x<-matrix(rnorm(1024),nrow=32)
# simulate a correlation matrix with values -0.5 to 0.5
x<-rescale(x,c(-0.5,0.5))
# add a column with the extreme values (-1,1) to calculate
# the colors, then drop the extra column in the result
cellcol<-color.scale(cbind(x,c(-1,rep(1,31))),c(0,1),0,c(1,0))[,1:32]
color2D.matplot(x,cellcolors=cellcol,main="Blue to red correlations")
# do the legend call separately to get the full range
color.legend(0,-5,6.5,-3,legend=c(-1,-0.5,0,0.5,1),
rect.col=color.scale(c(-1,-0.5,0,0.5,1),c(0,1),0,c(1,0)),align="rb")
x<-matrix(rnorm(100),nrow=10)
# generate colors that show negative values in red to brown
# and positive in blue-green to green
cellcol<-matrix(rep("#000000",100),nrow=10)
cellcol[x<0]<-color.scale(x[x<0],c(1,0.8),c(0,0.8),0)
cellcol[x>0]<-color.scale(x[x>0],0,c(0.8,1),c(0.8,0))
# now do hexagons without borders
color2D.matplot(x,cellcolors=cellcol,xlab="Columns",ylab="Rows",
do.hex=TRUE,main="2D matrix plot (hexagons)",border=NA)
# for this one, we have to do the color legend separately
# because of the two part color scaling
legval<-seq(min(x),max(x),length.out=6)
legcol<-rep("#000000",6)
legcol[legval<0]<-color.scale(legval[legval<0],c(1,0.8),c(0,0.8),0)
legcol[legval>0]<-color.scale(legval[legval>0],0,c(0.8,1),c(0.8,0))
color.legend(0,-1.8,3,-1.4,round(c(min(x),0,max(x)),1),rect.col=legcol)
# do a color only association plot
xt<-table(sample(1:10,100,TRUE),sample(1:10,100,TRUE))
observed<-xt[,rev(1:dim(xt)[2])]
expected<-outer(rowSums(observed),colSums(observed),"*")/sum(xt)
deviates<-(observed-expected)/sqrt(expected)
cellcol<-matrix(rep("#000000",100),nrow=10)
cellcol[deviates<0]<-
color.scale(deviates[deviates<0],c(1,0.8),c(0,0.5),0)
cellcol[deviates>0]<-
color.scale(deviates[deviates>0],0,c(0.7,0.8),c(0.5,0))
color2D.matplot(x=round(deviates,2),cellcolors=cellcol,
show.values=TRUE,main="Association plot")
color2D.matplot(x,extremes=c(2,3),main="Hinton diagram (green +, red -)",
Hinton=TRUE)
Run the code above in your browser using DataLab