Learn R Programming

plsRglm (version 1.5.1)

kfolds2Press: Computes PRESS for k-fold cross validated partial least squares regression models.

Description

This function computes PRESS for k-fold cross validated partial least squares regression models.

Usage

kfolds2Press(pls_kfolds)

Value

list

Press vs number of components for the first group partition

list()

...

list

Press vs number of components for the last group partition

Arguments

pls_kfolds

a k-fold cross validated partial least squares regression model

References

Nicolas Meyer, Myriam Maumy-Bertrand et Frédéric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47

See Also

kfolds2coeff, kfolds2Pressind, kfolds2Mclassedind and kfolds2Mclassed to extract and transforms results from k-fold cross validation.

Examples

Run this code

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
kfolds2Press(cv.plsR(object=yCornell,dataX=data.frame(scale(as.matrix(XCornell))[,]),
nt=6,K=12,NK=1,verbose=FALSE))
kfolds2Press(cv.plsR(object=yCornell,dataX=data.frame(scale(as.matrix(XCornell))[,]),
nt=6,K=6,NK=1,verbose=FALSE))
rm(list=c("XCornell","yCornell"))

# \donttest{
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
kfolds2Press(cv.plsR(object=ypine,dataX=Xpine,nt=10,NK=1,verbose=FALSE))
kfolds2Press(cv.plsR(object=ypine,dataX=Xpine,nt=10,NK=2,verbose=FALSE))

XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
kfolds2Press(cv.plsR(object=ypine,dataX=XpineNAX21,nt=10,NK=1,verbose=FALSE))
kfolds2Press(cv.plsR(object=ypine,dataX=XpineNAX21,nt=10,NK=2,verbose=FALSE))
rm(list=c("Xpine","XpineNAX21","ypine"))
# }

Run the code above in your browser using DataLab