This function computes the Degrees of Freedom using the Krylov
representation of PLS and other quantities that are used to get information
criteria values. For the time present, it only works with complete datasets.
Usage
# S3 method for dof
plsR(modplsR, naive = FALSE)
Value
DoF
Degrees of Freedom
sigmahat
Estimates of
dispersion
Yhat
Predicted values
yhat
Square Euclidean norms
of the predicted values
RSS
Residual Sums of Squares
Arguments
modplsR
A plsR model i.e. an object returned by one of the functions
plsR, plsRmodel.default, plsRmodel.formula,
PLS_lm or PLS_lm_formula.
If naive=FALSE returns values for estimated degrees of freedom and
error dispersion. If naive=TRUE returns returns values for naive
degrees of freedom and error dispersion. The original code from Nicole
Kraemer and Mikio L. Braun was unable to handle models with only one
component.
References
N. Kraemer, M. Sugiyama. (2011). The Degrees of Freedom of
Partial Least Squares Regression. Journal of the American Statistical
Association, 106(494), 697-705. N. Kraemer, M. Sugiyama, M.L. Braun.
(2009). Lanczos Approximations for the Speedup of Kernel Partial Least
Squares Regression, Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics (AISTATS), 272-279.
See Also
aic.dof and infcrit.dof for computing
information criteria directly from a previously fitted plsR model.