Learn R Programming

plsRglm (version 1.5.1)

simul_data_UniYX_binom: Data generating function for univariate binomial plsR models

Description

This function generates a single univariate binomial response value \(Y\) and a vector of explanatory variables \((X_1,\ldots,X_{totdim})\) drawn from a model with a given number of latent components.

Usage

simul_data_UniYX_binom(totdim, ncomp, link = "logit", offset = 0)

Value

vector

\((Y,X_1,\ldots,X_{totdim})\)

Arguments

totdim

Number of columns of the X vector (from ncomp to hardware limits)

ncomp

Number of latent components in the model (from 2 to 6)

link

Character specification of the link function in the mean model (mu). Currently, "logit", "probit", "cloglog", "cauchit", "log", "loglog" are supported. Alternatively, an object of class "link-glm" can be supplied.

offset

Offset on the linear scale

Details

This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a modification of a port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.

References

T. Naes, H. Martens, Comparison of prediction methods for multicollinear data, Commun. Stat., Simul. 14 (1985) 545-576.
Morris, Elaine B. Martin, Model selection for partial least squares regression, Chemometrics and Intelligent Laboratory Systems 64 (2002), 79-89, tools:::Rd_expr_doi("10.1016/S0169-7439(02)00051-5").

See Also

simul_data_UniYX

Examples

Run this code

# \donttest{
layout(matrix(1:6,nrow=2))
# logit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4)))[,1])
# probit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="probit")))[,1])
# cloglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cloglog")))[,1])
# cauchit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cauchit")))[,1])
# loglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="loglog")))[,1])
# log link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="log")))[,1])
layout(1)


layout(matrix(1:6,nrow=2))
# logit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,offset=5)))[,1])
# probit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="probit",offset=5)))[,1])
# cloglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cloglog",offset=5)))[,1])
# cauchit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cauchit",offset=5)))[,1])
# loglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="loglog",offset=5)))[,1])
# log link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="log",offset=5)))[,1])
layout(1)


layout(matrix(1:6,nrow=2))
# logit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,offset=-5)))[,1])
# probit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="probit",offset=-5)))[,1])
# cloglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cloglog",offset=-5)))[,1])
# cauchit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cauchit",offset=-5)))[,1])
# loglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="loglog",offset=-5)))[,1])
# log link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="log",offset=-5)))[,1])
layout(1)
# }

Run the code above in your browser using DataLab